
 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

Origin-1: a generative AI platform for de novo 

antibody design against novel epitopes 
 
Simon Levine,* Jonathan Edward King,* Jacob Stern,* David Grayson,* 
Raymond Wang,* Rui Yin,* Umberto Lupo,* Paulina Kulytė,* Ryan Matthew 
Brand,* Tristan Bertin,* Robert Pfingsten,* Jovan Cejovic,* Chelsea Chung, 
Breanna K. Luton, Andrew Hagemann, Robel Haile, Elliot Medina, Pankaj 
Panwar, Oleksii Dubrovskyi, Chase LaCombe, Zahra Anderson, Derrik Mildh, 
Scott Benjamin, Joe Kaiser, Joseph Ferron, Marta Sarrico, Alexandria Kershner, 
Apurva Mishra, Kai R. Ejan, Emily K. Marsh, Paul Bringas, Phetsamay Vilaychack, 
Kyra Chapman, Jacob Ripley, Muttappa Gowda, Kathryn M. Collins, Cailen M. 
McCloskey, Jeremiah S. Joseph, Rylee Ripley, Shaheed A. Abdulhaqq, Audree 
Feltner, Michael Guerin, Jeffrey Goby, Jesse Hendricks, Danielle Castillo,  Sean 
McClain, Douglas Ganini, Derek Shpiel, James Mategko, Eder Cruz Garcia, 
Masoud Zabet-Moghaddam, John M. Sutton, Zheyuan Guo, Sean M. West, 
Janani S. Iyer,† Amir Shanehsazzadeh† 
 
*Equal contribution 
†Correspondence to ashanehsazzadeh@absci.com, jiyer@absci.com 

Data: https://github.com/AbSciBio/origin-1  

 

mailto:ashanehsazzadeh@absci.com
mailto:jiyer@absci.com
https://github.com/AbSciBio/origin-1


 2 

0 Abstract 
 
Generative artificial intelligence has advanced antibody discovery, yet de novo design of 
therapeutic antibodies against targets with “zero-prior” epitopes remains a fundamental 
challenge. We define “zero-prior” epitopes as target sites lacking structural data from any 
reported antibody-antigen or protein-protein complex involving the target. Here we 
present Origin-1, a generative AI platform that overcomes this by integrating 
epitope-conditioned all-atom structure generation, paired complementarity determining 
region sequence design, and a specialized co-folding-based scoring protocol to select 
antibody designs predicted to be high-confidence, specific binders with favorable 
developability. We evaluated Origin-1 on a panel of ten targets selected to have no available 
protein–protein complex structures and minimal homology (≤60% sequence identity) to 
proteins with known complexes, creating stringent design conditions. In fewer than one 
hundred design attempts per target, we identified developable, specific antibodies, 
validated across multiple biophysical and developability assays, for four targets: COL6A3, 
AZGP1, CHI3L2, and IL36RA, with functional inhibition demonstrated for IL36RA. Cryogenic 
electron microscopy confirmed the atomic accuracy of our designs, revealing complexes 
that closely matched the computational models with high structural fidelity (3.0–3.1 Å 
resolution; 0.73-0.83 DockQ). Furthermore, we employed AI-guided affinity maturation to 
optimize a de novo antibody against IL36RA into a functional antagonist with 104 nM potency. 
These results demonstrate a framework for targeting epitopes without structural 
precedent, expanding the programmable therapeutic antibody landscape. 

 

1 Introduction 
 
Antibodies serve as the immune system’s primary defense mechanism, recognizing and 
neutralizing pathogens with exceptional specificity. Their capacity to bind diverse antigens 
with high affinity has established antibodies as essential therapeutic agents [1, 2, 3]. However, 
despite their success, traditional antibody discovery methods remain resource-intensive 
and provide limited control over which epitopes are targeted. This limitation motivates the 
development of computational approaches for efficient de novo antibody design with 
precise epitope specification. 
 
Antibody-antigen recognition is primarily mediated by six complementarity-determining 
regions (CDRs), whose high sequence and conformational variability make CDR design the 
core computational challenge [4, 5]. Therapeutic antibody design typically begins with 
known framework scaffolds that have favorable developability, stability, and expression 
properties, and then focuses on designing CDRs that bind a target epitope. A common 
computational paradigm addresses this in two stages: first generating atomistic antibody-
antigen complex structures conditioned on the antigen and epitope, then designing CDR 
sequences predicted to fold into these structures. 
 
Recent advances in machine learning have enabled progress in protein structure prediction 
[6, 7] and de novo design [8, 9], yet existing approaches exhibit significant limitations for 
epitope-targeted antibody design. Structure generation methods face several challenges: 
backbone-only diffusion approaches such as RFdiffusion [9] and RFantibody [10] lack 
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atomic resolution and treat antigens rigidly; general-purpose all-atom design models 
including P(all-atom) [11] and La-Proteina [12] are not fine-tuned for antibody-specific 
conditioning or epitope-targeted generation; and hallucination-based approaches such as 
BoltzDesign [13], BindCraft [14], Germinal [15], and mBER [16] leverage gradient signals from 
trained structure prediction models for optimization but incur substantial computational 
expense and often necessitate subsequent sequence redesign or complex loss function 
composition to avoid degenerate outputs.  
 
Sequence design models also remain limited in their applications to epitope-specific 
antibody design. Inverse folding models such as ProteinMPNN [17] and antibody-specific 
variants such as AbMPNN [18] achieve strong performance but treat heavy and light chains 
independently. Although hybrid approaches that combine structure-based models with 
protein language models have shown promise [19-22] and paired antibody language 
models [21] enable heavy-light chain co-modeling, these methods do not deeply integrate 
paired language representations with geometric structure encoding in a unified multi-
modal framework for therapeutic CDR design. 
 
Other antibody modeling approaches that report successful epitope-specific design 
provide limited detail on their technical methodology; thus, effectively evaluating them for 
their advances or limitations remains difficult [23-27]. The recently open-sourced BoltzGen 
[28], developed independently and concurrently with this work, addresses several key 
limitations—providing all-atom resolution and binding site conditioning through a flexible 
design specification language—though experimental validation for antibodies is limited to 
nanobodies, leaving full-length antibody design with experimental validation unaddressed. 
These gaps motivate approaches that combine epitope-conditioned all-atom structure 
generation with paired-chain sequence design in addition to transparency in development 
methodology. 
 
When applying protein structure and sequence design tools to problems in drug discovery, 
it is important to not only produce accurate designs, but also stringently filter outputs such 
that a minimal, high-confidence set can be advanced to the laboratory for in vitro 
experimentation [29]. This “design-and-score” paradigm uses generative models to design 
putative binders to targets of interest and subsequently leverages scoring metrics to filter 
and rank designs for downstream experimentation. Prior work has shown that the 
confidence metrics output from folding models such as AlphaFold-Multimer [30] can 
accurately evaluate the likelihood that a sequence will adopt a particular structural 
geometry [30-32]. However, other studies have shown that these folding models perform 
poorly for antibody-antigen complex structures specifically [33, 34], with models failing to 
recover correct poses when provided with antibody-antigen complex sequences [2]. 
Therefore, beyond addressing limitations in protein structure and sequence design to 
achieve accurate epitope-targeted CDR design, further innovation is required in folding 
model methodology to apply the associated confidence metrics to antibody design scoring. 

 

To these ends, we introduce Origin-1, a design-and-score AI platform that addresses the 
aforementioned limitations to achieve epitope-specific de novo antibody design via a two-
stage framework. The first stage, AbsciGen, enables site-specific, conditional CDR design. 
The second stage, AbsciBind, addresses the limitations of traditional folding-based 
confidence metrics to accurately evaluate antibody-antigen complex designs and select 
the best candidates for downstream experimentation. We use this platform to generate 
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developable and functional full-length monoclonal antibodies (mAbs) against four human 
protein targets (COL6A3, AZGP1, CHI3L2, and IL36RA) in fewer than one hundred attempts 
per target. Of note, these mAbs were designed against “zero-prior” epitopes – that is, 
epitopes that were selected as putative functional binding sites without guidance from 
solved complex structures. These results show that AI-based approaches can succeed not 
only in designing antibody binders against structurally resolved protein-protein interfaces 
[23-27], but also user-specified novel interfaces, which may unlock access to disease 
targets that have historically been difficult to drug or otherwise remain understudied. 

 

2 Methods 
 

2.1 Overview of Origin-1 
 
Origin-1 is a generative AI platform that designs and scores putative antibody binders to 
target proteins of interest. To achieve this outcome, Origin-1 performs two key tasks: 1) 
generates the structures and corresponding amino acid sequences of antibodies that are 
likely binders to proteins of interest, and 2) scores the resulting candidates to select high-
confidence designs to prioritize for in vitro experimentation. We refer to the protocols used 
to perform these tasks as AbsciGen and AbsciBind, respectively.  

 

In the sections that follow, we describe the methodology underlying these strategies and 
the experimental approaches we used to assess their joint performance in Figure 1. 

 
Figure 1. Overview of the Origin-1 platform and experimental validation cascade. (Left) 
Overview of Origin-1 Platform. AbsciGen generates antibody designs through two stages: 
AbsciDiff, which produces all-atom antibody-antigen complex structures via diffusion-
based generation, and IgDesign2, which designs CDR sequences. AbsciGen designs are 
evaluated by AbsciBind, which identifies high-confidence binders to reduce experimental 
screening demands. (Right) Overview of experimental cascade. Antibody designs are 
expressed as full-length monoclonal antibodies and are evaluated through stringent 
validation experiments to confirm specificity, selectivity, and epitope-specific binding. Initial 
hits are identified by SPR and confirmed by BLI and aSEC complexation experiments. Hits 
are assessed for quality and developability, including purity, aggregation, thermal stability, 
polyreactivity, and hydrophobicity. Antibody-antigen complexes are formed and analyzed 
by cryo-EM to confirm agreement between in silico designs and experimentally determined 
structures. Some hits are optimized through synthesis of model-ranked mutational variants 
(e.g., Origin-1), with affinity confirmed by SPR and BLI. Top parent and variant designs are 
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evaluated in HEKBlue assays to confirm functional activity. SPR = Surface Plasmon 
Resonance; BLI = Biolayer Interferometry; aSEC = Analytical Size Exclusion Chromatography; 
SEC-HPLC = Size Exclusion Chromatography – High-Performance Liquid Chromatography; 
NR-CGE = Non-Reduced Microchip Capillary Gel Electrophoresis; MCGE = Microchip 
Capillary Gel Electrophoresis; nanoDSF = Nanoscale Differential Scanning Fluorimetry; DLS = 
Dynamic Light Scattering; HIC-HPLC = Hydrophobic Interaction Chromatography - High-
Performance Liquid Chromatography; PR ELISA = Polyreactivity Enzyme-Linked 
Immunosorbent Assay; AC-SINS = Affinity-Capture Self-Interaction Nanoparticle 
Spectroscopy; Cryo-EM = Cryogenic Electron Microscopy. Created using Biorender.com. 

 

2.2 Origin-1 Datasets and Curation 
 
To train AbsciGen we rely on AbData, a protein structure curation workflow and database 
that we developed specifically for training antibody design models. In brief, the AbData 
pipeline comprises three stages: 1) Protein Data Bank (PDB) [35] sequence and structure 
information extraction, in addition to structure cleaning and resolution of missing residues 
and atoms; 2) antibody-antigen complex or protein-protein dimeric interface metadata 
extraction; and 3) structure dataset creation, dataset splitting, data deduplication, and final 
annotation of structure interfaces, complementarity determining regions (CDRs), and 
frameworks. This pipeline captured data from all bioassemblies and asymmetric units in the 
PDB, resulting in antibody structures from 10,045 distinct PDBs, including all structures in the 
Structural Antibody Database (SAbDab) [36] as well as many rare categories of antibodies 
that are incompletely captured in SAbDab [37, 38]. We also devised an inspection process 
that automatically flagged over 1400 candidate entries with potential errors arising from 
spurious bioassemblies, false symmetries, or artifactual chain duplication. When errors were 
confirmed, individual complexes were corrected by removing erroneous chains or 
reverting to the asymmetric unit. Our protein-protein interaction dataset largely follows the 
logic outlined in Townshend et al. 2019 [39], where interfaces are extracted for all contacting 
chain-pairs across the PDB. Additional details on AbData’s methodology are reported in 
Supplement §7.1.  

 

2.3 Origin-1 Models 
 
Origin-1 generates antibody designs via AbsciGen, comprising AbsciDiff for structure 
generation (§2.3.1, Supplement §7.2) and IgDesign2 for sequence design (§2.3.2). It scores 
designs using AbsciBind (§2.3.3).  
 

2.3.1. Structure Design via AbsciDiff 
 
AbsciDiff (Figure 2) is a diffusion-based all-atom generative model fine-tuned from Boltz-1 
[40] for epitope-conditioned antibody design. Key modifications include antibody- and 
docking-specific feature masking and conditioning strategies, an intermediate sequence 
hypothesis module with recycling, integration of optimized CuEquivariance kernels [41], and 
support for structural templates. The sampling procedure follows Boltz-1, preserving the 
sample efficiency and stability of the parent model. In the following sections, we describe 
the diffusion formulation, feature generation strategy, architectural changes, and training 
protocol. 
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Figure 2. Schematic illustrating the AbsciDiff model. Building on the architecture of Boltz-1, 
AbsciDiff uses a pairformer-based trunk to provide conditioning information to a diffusion 
module. Modifications include invariant feature conditioning via an AlphaFold3-like template 
module [6], as well as a module to predict a sequence hypothesis. The sequence hypothesis 
is used to update the model’s input features for a second forward pass through the model. 
Dashed lines indicate a stopped gradient. Red indicates modifications to Boltz-1. 
 
AbsciDiff Diffusion Formulation 
Following Boltz-1, we model the noise added to the native structure of an antibody-antigen 
complex 𝑋! ∈ ℝ"	×% through a forward diffusion process, 𝑑𝑋& = √2𝑡𝑑𝐵&, 
where 𝑑𝐵& is (𝑁 × 3)-dimensional Brownian motion. 
 
To generate new complexes, we reverse this diffusion process over 𝑇 timesteps (Figure 3). 
Starting from 𝑋'	~	𝒩(0, 𝐼), we iteratively denoise using a model 𝑃( parametrized by a neural 
network and conditioned on antigen and framework structure templates 𝑋), 𝑋*, sequences 𝑆), 𝑆*, and epitope residues 𝐸). We denote the full conditioning information as  𝐶 = 𝑋), 𝑋* , 𝑆), 𝑆* , 𝐸). 
We train this model to approximate the expected coordinates of the entire original complex 
structure under the defined diffusion process given the current timestep and all available 
conditioning information: 𝑃((𝑋& , 𝑡; 𝐶) ≈ 𝔼+!|+"[𝑋!], 
with the standard denoising loss ℒ(𝜃) = 𝑤& · ‖𝑃((𝑋& , 𝑡; 𝐶) − 𝑋!‖-, 
where 𝑤&  is a weight proportional to the variance of the noising process at timestep 𝑡 . 
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Figure 3. Reverse diffusion trajectory for joint antibody–antigen structure generation. 
Starting from a fully corrupted state 𝑋'  (left), AbsciDiff performs iterative denoising 
transitions 𝑝(𝑋&|𝑋&./, 𝑡)  (middle), progressively recovering global geometry and local 
structure until producing a final denoised sample 𝑋! (center right). Subsequently predicted 
confidence computed on the final structure is shown on the far right (color scaled by 
residue pLDDT, where blue represents high confidence and red represents low 
confidence).  
 
AbsciDiff Featurization 
Antigen, Framework, and Epitope Conditioning: AbsciDiff’s most significant departure from 
Boltz-1 concerns feature masking and conditioning. For our intended use, we assume 
antigen structures are known, and we aim to design or redesign only the CDR regions while 
keeping therapeutic framework sequences and structures intact. We additionally condition 
on an epitope defined during training as the set of antigen residues within 6 Å of the 
antibody, down-sampled via a geometric distribution (𝑝 = 0.3) for robustness. We mask 
sequence and structure features for all CDR positions, as well as all inter-chain pair features. 
Docking is thus guided only by the token-wise binary epitope vector, implemented 
analogously to Boltz-1’s pocket-conditioning feature. 
 
Design Region Representation: Amino acid identities in the design region are initially set to 
the unknown (UNK) amino acid token for both sequence input and reference conformer 
lookup. During structure prediction, the model is trained to perform atom superposition, as 
in P(all-atom) [11]. For this task, all amino acids in the design region are represented in 
Atom14 notation, with excess “virtual” atoms placed at the location of their residue’s Cα 
(Supplementary Figure 1). Amino acids outside the design region have no virtual atoms since 
their identities are known a priori. Other than the sequence hypothesis head described 
below, AbsciDiff performs no sequence decoding on designed amino acids. 
 
Template Structures: AbsciDiff also adds support for structural template featurization in two 
ways: endogenous templating (in which pairwise residue distance information is derived 
from a user-provided structure) and exogenous templating (where the same information is 
sourced from external template databases). In both cases, structural information is 
encoded and embedded as in AlphaFold3. During development, we found that endogenous 
templating was practical and effective at providing structural guidance without introducing 
bias. Thus, the final training runs included only endogenous template information. 
 
Multiple Sequence Alignments (MSAs): AbsciDiff supports MSA featurization as in Boltz-1, 
though it remains disabled by default. We found that full MSA feature sets performed no 



 8 

better than a one-hot encoding of the input sequence when conditioned on endogenous 
templates. 
 
AbsciDiff Trunk Module and Intermediate Sequence-Informed Design 
An auxiliary prediction head in AbsciDiff produces a design region sequence hypothesis 

from the final single (𝑠) representation of the trunk. The predicted logits are decoded into 
the most likely amino acid tokens and, along with corresponding atom-level reference 
conformer features, are recycled through the trunk with gradient flow stopped. Sequence 
prediction is trained using cross-entropy loss against the native sequence. We hypothesize 
that intermediate sequence prediction and conformer recycling assists the design process 
by focusing the search space of potential residue identities and local atomic conformations 
prior to the diffusion model performing final design. 
 
AbsciDiff Confidence Module and Design Pre-Ranking  
Though the underlying confidence module architecture is the same as Boltz-1, AbsciDiff 
introduces a new on-model ranking and filtering strategy. Like Boltz-1, the diffusion module 
emits 𝑀 samples per sampling pass, which are subsequently scored using the confidence 
module to generate predicted Template Modeling scores (pTM), predicted Local Distance 
Difference Test scores (pLDDT), predicted Docking Error (pDE), and predicted Aligned Error 
(pAE). We normalize these scores (noting that pDE and pAE are unbounded and must be 
transformed and inverted) before averaging to produce a composite ranking score by 
which the top 𝑘 ≤ 𝑀 candidates are selected. Although the confidence module is efficient — 

and its scores well-correlated with supervised metrics - we do not rely on it alone for 
evaluating real-world binding affinity. As such, we employ this on-model scoring strategy for 
efficient pre-ranking, thereby reducing the downstream computational cost of re-folding 
and scoring designs with AbsciBind. 
 
AbsciDiff Training 
Fine-tuning: We initialize AbsciDiff using the weights from the provided Boltz-1 checkpoint 
and fine-tune the model on a subset of AbData. As described earlier, redundant dataset 
entries were filtered based on sequence similarity thresholds, and data were split using a 
combination of temporal and sequence similarity-based criteria. Training follows Boltz-1 
defaults with the number of learning rate steps reduced to 20 and an effective batch size of 
64 for 10 epochs.  
 
Cropping: Input structures are spatially cropped to a maximum of 512 residues, with larger 
crop sizes showing minimal improvement on sampled antibody-antigen interface quality. 
The cropping strategy centers the representation on the antibody-antigen interface and 
requires that: (1) the variable antibody region (Fv) is always included; (2) antibody constant 
domains are always excluded; (3) the remaining budget is allocated to antigen residues in 
order of the smallest distance to the epitope. 

 

2.3.2 Sequence Design via IgDesign2 

 
IgDesign2 Problem Formulation 
We model the joint probability of the unknown sequence region 𝑅 using an autoregressive 
factorization: 𝑅 = (𝑟/, 𝑟-, … , 𝑟"), 
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𝑝((𝑅|𝑋, 𝐶) =O𝑝((𝑟0|𝑟10 , 𝑋, 𝐶),"

02/
 

 
where each amino acid 𝑟0  is conditioned on previously generated positions 𝑟10 , backbone 
structure 𝑋,  and known sequence context 𝐶.  Our goal is to find the neural network 
parameters 𝜃 that maximize the likelihood of the training data under this scheme. 
 
IgDesign2 Model Architecture 
IgDesign2 combines a Graph Neural Network (GNN) encoder, a causal transformer 
decoder, and a protein language model (pLM) refinement module into a structure-
conditioned sequence design system (Figure 4). The input to the encoder consists of the 
four-atom representation of the protein backbone [𝑁, 𝐶3 , 𝐶, 𝑂]  residues in which each 
residue constitutes a node in a graph with 𝑘 edges connecting to its nearest neighbors in 
Euclidean space. We leverage PiFold’s [42] node and edge featurization scheme and mirror 
their GNN message passing architecture for encoding the three-dimensional geometry of 
each residue based on its atomic coordinates. The decoder ingests the structure 
embeddings and any antigen and antibody framework sequence context for conditioning 
the autoregressive CDR sequence generation process, which is applied in a randomly 
shuffled decoding order via temperature-weighted sampling or beam search. 
 
The heavy and light chain sequences are then provided to the IgBert paired antibody 
language model [22] for structure-aware refinement. At every layer of the pLM’s 
transformer, the pLM latent embeddings are fused with the final structure embedding in a 
shared low-dimensional space before being projected back to the pLM dimension for 
processing by the subsequent transformer layer [20, 43, 44]. After the transformer has fully 
processed the fused representation, the final latent representations of both the GNN and 
pLM are decoded by their respective sequence prediction heads and integrated with a 
residual connection to produce the final sequence output. This jointly optimized “generate-
and-refine” approach combines the strengths of both sequence modeling paradigms to 
enhance the quality of our conditional CDR designs. 
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Figure 4. Schematic illustrating IgDesign2 architecture for CDR sequence design. A GNN 
encoder processes antibody-antigen structure features, followed by a causal transformer 
decoder for autoregressive sequence generation. The decoder supports both 
temperature-weighted sampling (for diversity) and beam search (for high-likelihood 
sampling). Generated sequences are refined by a structure-aware paired antibody 
language model. Red indicates model components developed specifically for this work. 
Snowflakes indicate frozen pre-trained modules. Solid arrows show forward information 
flow. Dotted arrows show recycled information flow. 
 
IgDesign2 Pre-Training 
We pre-train the encoder and decoder on protein-protein interaction examples from 
AbData, spatially cropped in three dimensions around the interfacial region of the two chains 
to a maximum of 500 total residues. We use the Adam optimizer with a learning rate of 10-3, 	𝛽/ = 0.9, and 𝛽- = 0.999, along with an effective batch size of 32 and a standard cross-entropy 
loss over 20 possible amino acids. Early stopping is applied when the loss has not improved 
for 10 consecutive epochs on the held-out validation set. We retain the published 
hyperparameters of the original PiFold model for the encoder (dimension 128, 10 layers, 4 
heads, 30 nearest neighbors in the structure graph), while the causal transformer decoder 
consists of 10 standard transformer decoder layers with four attention heads and a 
feedforward dimension of 512. We also apply Gaussian noise with a standard deviation of 0.1 
Å to the coordinates of each input structure during training to encourage robustness. 
 
IgDesign2 Fine-Tuning 
We fine-tune the model with the same hyperparameters, aside from two adjustments: we 
reduce the effective batch size to 8 and terminate training when the cross-entropy loss over 
the masked region has not improved for 5 consecutive epochs on the held-out validation 
set. Antibody-antigen complexes are spatially cropped to a maximum of 600 residues 
around the interacting residues of the antigen while retaining the full antibody Fv. The pLM 
weights remain frozen throughout fine-tuning, while a trainable multi-layer perceptron 
(MLP) is introduced per pLM layer to fuse the incoming projections from PiFold and the pLM. 
Each MLP consists of three standard linear layers of dimension 128, with ReLU activation 
functions. The incoming projections from PiFold and the pLM reduce their respective 
embeddings to 64 dimensions prior to concatenation, while the final projection maps the 
128-dimensional MLP output back to the pLM embedding dimension. We compute the 
cross-entropy loss over both the sequence produced by the causal decoder and the 
sequence refined by the pLM, summing them to compute the total loss. 
 

2.3.3 Design Filtering via AbsciBind 
 
We create a protocol, AbsciBind, as a scoring method for antibody-antigen complexes, 
leveraging the advantages of existing co-folding-based scoring approaches and identifying 
workarounds to their limitations [6, 7, 33, 34]. We provide extended details on the 
methodology underlying AbsciBind in Supplement §7.5. In brief, AbsciBind is a derivation of 
AF_Unmasked [45], where the associated interface-predicted template modeling (ipTM) 
score is computed with greater awareness of the relative arrangements of antibody heavy 
and light chains in addition to antigen chains. We benchmark the resulting AbsciBind ipTM 
Score against several existing comparable ipTM scores [27] via a binder vs. non-binder 
discrimination task in an experimental set of eight antibody-antigen systems [21, 46]. Results 
show that AbsciBind achieves the strongest average binder vs. non-binder discrimination in 
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seven of eight targets (Figure 5) when the maximum ipTM score across all five AlphaFold-
Multimer (AFM) v2.3 model checkpoints is used for assessment. 

Figure 5. The AbsciBind protocol ipTM score outperforms comparable alternatives for 
evaluating antibody-antigen complexes. Evaluation was performed on an experimental set 
of eight antibody–antigen systems [21, 46]. All AbsciBind approaches were evaluated using 
ipTM scores to ensure comparability with previously reported results. AUROC values for 
GeoFlow-V3, Geoflow-V2, AFM-IG, Protenix, Boltz-2 and Chai-1 were sourced from 
BioGeometry et al. 2025 [27]. Best AbsciBind ipTM is the maximum ipTM score across all five 
AFM v2.3 model checkpoints for a given design. Selected AbsciBind ipTM uses the ipTM 
score from AFM v2.3 Model 2 only (model_2_multimer_v3 checkpoint). 
 
Importantly, using only Model 2 yields an approximately 80% reduction in runtime compared 
with evaluating designs with all five models. Given this substantial runtime reduction and the 
strong classification performance, Model 2 is used to support the AbsciBind protocol for the 
remainder of the present effort. 
 
We define a final AbsciBind Score as the mean of the default AbsciBind protocol ipTM score 
(computed over all antibody and antigen chains and interfaces) and the Antibody-Aligned 
ipTM score (Supplement §7.5). We design this metric to integrate a global interface score 
with an antibody-aligned, consistently normalized assessment of the antibody-antigen 
interface’s quality. We use this score to evaluate AbsciGen designs for de novo library design 
(§2.4.3) and to select mutant variants for lead optimization efforts (§2.4.4). 
 

2.3.4 In silico Benchmarking of Origin-1 
 
We benchmark AbsciGen against RFantibody [10], a diffusion-based antibody design 
method selected for its experimentally-validated design pipeline. To ensure a fair 
comparison, we modify RFantibody’s input pre-processing to initialize idealized coordinates 
at the origin for all CDR residues (Supplement §7.3). All other RFantibody settings remain at 
their default values. For AbsciGen, we disable the beam search feature of IgDesign2 and 
instead use autoregressive sampling to encourage greater sequence diversity. All other 
design choices remain as described below and in the Methods. 
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Our objective was to evaluate AbsciGen and RFantibody in their respective abilities to design 
antibodies against epitopes that lacked associated target structures in complex with 
antibody or protein binders (“zero-prior” epitopes). To this end, we applied both approaches 
to design CDR regions using multiple frameworks, CDR lengths, and putative epitopes. We 
then assessed the quality of generated designs with unsupervised metrics. We used 
AbsciBind Score (§2.3.3) to compare AbsciGen and RFantibody design performance. Of 
note,  AbsciGen was developed without the explicit goal of maximizing AbsciBind Score. We 
also computed Observed Antibody Space identity search (OASis [47]) scores associated 
with AbsciGen vs. RFantibody sequences to compare the humanness achieved via both 
approaches.  
 
Test Set 
We test AbsciGen and RFantibody against four targets with no antibody-antigen complex 
structures in our training data: COL6A3, AZGP1, IL36RA, and CHI3L2. The epitope selection 
process is described in §2.4.2. 
 
Frameworks 
For each target, we employ three well-characterized therapeutic antibody frameworks: 
trastuzumab, relatlimab, and sotrovimab. This standard design strategy mitigates the risk of 
memorizing native antibody-antigen pairs and ensures robust starting scaffolds with 
established developability profiles. 
 
Design Specification 
We generate diverse design specifications by varying HCDR3 length (8–26 residues), LCDR3 
length (8–10 residues), and epitope subsampling (retaining 45–90% of identified epitope 
residues). Epitope subsampling reflects uncertainty in epitope identification and 
encourages exploration of diverse binding modes within the target region. This procedure 
yielded 102 distinct design specifications per target. For each design specification, we 
generate one structure and eight sequences. 

 

2.4 Experimental Validation of Origin-1 
 
To experimentally test Origin-1’s ability to design full-length monoclonal antibodies in a low-
throughput setting, we selected fewer than one hundred designs per target and ordered 
them as monoclonal antibodies for low-throughput in vitro screening. Designs that 
demonstrated successful binding in primary surface plasmon resonance (SPR) screens 
were further validated using biolayer interferometry (BLI), complexation analyses, 
developability assessments, and functional assays. Where appropriate, cryogenic electron 
microscopy (Cryo-EM) was used for structure confirmation (Figure 1). Together, these 
approaches allowed us to assess AbsciGen’s ability to design high quality binders to novel 
binding locations, and AbsciBind’s ability to select winning candidates from amongst these 
designs.  
 

2.4.1 Target Selection 
 
We selected targets to test Origin-1’s performance by prioritizing entries with high structural 
resolution (<3.5 Å) and few missing/unresolved residues, in addition to targets for which 
antigen reagents were commercially procurable (Table 1). To extend beyond what has been 
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demonstrated in recent reports of successful de novo antibody design [23-27], we 
additionally confirmed that the PDB did not contain structures of antibodies or other 
proteins in complex with these targets, requiring Origin-1 to identify novel binding interfaces 
(“zero-prior epitopes”), rather than providing Origin-1 with known binding interfaces to 
increase the likelihood of successful binder design. We further increased the complexity of 
the challenge by selecting targets that maintained limited sequence overlap (≤60% identity 
by MMseqs2 [48]) with any protein for which a protein-protein complex structure existed in 
the PDB, ensuring that the selected targets were understudied and required novel epitope 
identification. This approach allowed us to evaluate Origin-1’s generalizability. We 
experimentally validated Origin-1 on ten targets meeting these criteria (Table 1).  
 
IL36RA was of particular interest given its role as an anti-inflammatory cytokine that inhibits 
binding of the proinflammatory cytokines IL36α, IL36β, and IL36γ to the IL36 receptor (IL36R). 
This axis play s a complex role in some cancers where IL36β and IL36γ are believed to 
promote inflammation and therefore promote anti-tumor immune response, which would 
be dampened by IL36RA [49]. Inhibition of IL36RA may enhance IL-36R signaling, and could 
promote immune infiltration into previously “immune-cold” tumors. 
 

Target PDB ID Vendor Catalog Valency 

COL6A3 1KTH Sino Biological 16125-H07H Monovalent 

AZGP1 6R2U Sino Biological 13242-H08H  Monovalent 

IL36RA 4P0J Peprotech* 200-36RA Monovalent 

CHI3L2 4P8U R&D Systems 5112-CH-050 Monovalent 

ALCAM 5A1F Sino Biological 10045-H08H Monovalent 

AMBP 4ES7 Sino Biological 13141-H08H1 Monovalent 

CLEC4A 5B1W R&D Systems 9784-CI Monovalent 

KLK1 1SPJ Sino Biological 10407-H08H Monovalent 

FOLR1 4KM6 Sino Biological 11241-H08H Monovalent 

FOLR2 4KMY Sino Biological 11219-H08H Monovalent 

 

Table 1. List of targets used for Origin-1 experimental validation. * Peprotech is now owned 
and operated by Thermo Fisher Scientific. Of note, there is one PDB entry of AZGP1 in 
complex with a non-antibody protein that was missed during selection due to an error in the 
PDB bioassembly; thus, for AZGP1 we required the model to identify epitopes that were 
distinct from the solved interface in this PDB entry. 
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2.4.2 Epitope selection, framework selection, and CDR length determination 

 
Epitope selection 
 
To select epitopes per target, we surveyed the literature to assess each target’s biological 
role, surface geometry, chemical properties, and any reported interactions with other 
proteins, peptides, or small molecule ligands. We prioritized solvent-accessible surface 
regions maintaining curvature (i.e., knobs or holes), hydrophobic core patches surrounded 
by hydrophilic/nucleophilic residues, and structured regions as opposed to disordered/loop 
regions (Figure 6). For example, for IL36RA we identified a putative biologically relevant 
epitope to enable downstream functional characterization of any binders. In particular, we 
used the complex structure of A-552, a small molecule antagonist of IL36γ, [50] from 
PDB:6P9E to convert a functional binding pocket into a putative functional epitope of IL36γ, 
a homolog of IL36RA. We then mapped this putative epitope onto IL36RA via structural 
homology. 

 
Figure 6. List of residues selected per epitope per target for which Origin-1 binders were 
confirmed. 
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During inference, the epitope feature was subsampled from the full epitope as follows. For 
a single input sample, the number of epitope feature residues was sampled uniformly 
between 0.45 and 0.9 times the number of full epitope residues, with a minimum of four 
epitope feature residues. The epitope feature positions were then sampled without 
replacement from the full epitope until this number was reached. 
 
Framework Selection 
We selected four antibody frameworks (FWRs) from clinically approved therapeutic 
antibodies with diverse germlines, Kappa light chains, and for which high resolution (<3.5 Å) 
experimental structures were available (Table 2). An equal number of design specifications 
were allocated to each framework. 
 

Framework PDB ID Heavy Chain Germline Light Chain Germline 

Trastuzumab 1N8Z IGHV3-66 IGKV1-39 

Relatlimab 7UM3 IGHV4-34 IGKV3-11 

Dupilumab 6WG8 IGHV3-23 IGKV2D-28 

Sotrovimab 6WS6 IGHV1-18 IGKV3-20 

 

Table 2. Summary of frameworks (FWRs) used as inputs for Origin-1 in vitro performance 
evaluation. PDB = Protein Data Bank. 
 
CDR Length Determination 
HCDR1, HCDR2, and LCDR2 lengths were fixed to the germline CDR length, as determined 
by the selected FWRs. HCDR3, LCDR1, and LCDR3 lengths were sampled independently of 
one another from the empirical distributions observed within AbData (Supplementary Table 
5). The distribution was truncated to prevent overly short or overly long CDRs. We used the 
Kabat [51] definition of LCDR2 and the IMGT [52] definition of HCDR1, HCDR2, HCDR3, LCDR1, 
and LCDR3. We used Kabat for LCDR2 to extend the typically very short (3 amino acid) 
LCDR2 by IMGT notation. 
 
Design Specifications 
For each target, 3360 “design specifications” (configurations of target, epitope subsample, 
FWR, and CDR lengths) were sampled to provide diverse model input feature sets within the 
constraints of the design problem. 
 

2.4.3 Antibody library design 
 
Given a set of sampled input specifications, Origin-1 was applied through a series of in silico 
search and evaluation steps to iteratively design and score candidate binders to the 
intended targets at the desired epitopes. These stages comprised Wide Structure Search, 
Deep Structure Search, and Sequence Search (Supplementary Figure 15). Different metrics 
were used to evaluate designs at each of these stages depending on the type of output 
being assessed (Supplementary Table 6). The motivation for spreading design and GPU 
compute allocation across three stages was to concentrate resources on the most 
promising candidates in a particular search effort. During Wide Structure Search, backbone 
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structures were designed for a large number of design specifications, and design 
specifications corresponding to the top structures were selected. During Deep Structure 
Search, additional structures were generated based on these design specifications, and top 
structures were selected. During Sequence Search, additional sequences were designed 
for the top structures, culminating in selecting the top sequence for each of the top 95 
structures. This scaling approach enabled stepwise improvements in AbsciBind Score 
among top designs with each search stage (Supplementary Figure 16). We describe the 
strategies underlying Wide Structure Search, Deep Structure Search, and Sequence Search 
in Supplement §7.6.1 and include detailed library design methodology in Supplement §7.6. 
 

2.4.4 Lead Optimization 
 
We optimized the top designs against all four targets, as well as a second design against 
AZGP1, by modifying Hie et al.’s Efficient Evolution strategy [53, 54] to generate a library of 
single-mutant variants relative to the parent designs. Specifically, we integrated the 
AbsciBind protocol into this approach and used AbsciBind Score to support selection of 
variants for downstream experiments. A collection of protein language models (ESM-1b [55], 
ESM-1v [56], ESM2-650M [57], and AbLang2 [58]) was used in addition to the AbsciBind 
Score. Scoring, selection, and optimized variant library creation are described in Supplement 
§7.7. 
 

2.4.5 In vitro Assessment of Computational Designs 
 
In vitro experimental methods used to assess binding, developability, structural fidelity, and 
function are reported in Supplement §7.8. 

 

3 Results 
 

3.1 In silico Benchmarking of Origin-1 Reveals Superior Antibody-

Antigen Complex Design Relative to Field Standard  
 
Results from AbsciGen vs. RFantibody benchmarking experiments revealed that AbsciGen 
outperforms RFantibody when designing antibody sequences and structures for targets 
without known binders according to in silico unsupervised metrics (Table 3, Figure 7). Using 
the AbsciBind Score, internally validated to have high discrimination power for binding 
prediction, AbsciGen produces 28.37% of designs with AbsciBind Score ≥ 0.5, compared to 
1.49% for RFantibody, constituting a nearly 20-fold improvement. AbsciGen also achieves a 
higher mean AbsciBind Score than RFantibody, further demonstrating its superior 
performance for antibody-antigen binding prediction. Furthermore, AbsciBind Score 
distributions across four targets showed that AbsciGen frequently generates designs with 
significantly higher scores, indicating improved overall quality. Additional results from 
AbsciGen benchmarking experiments, including per-target statistics and a comparison 
between the original RFantibody and our modified version, can be found in §7.3. 
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Method Mean AbsciBind Score % Designs with AbsciBind Score ≥ 0.5 

RFantibody 0.270 ± 0.112 1.49% 

AbsciGen 0.422 ± 0.116* 28.37% 

 

Table 3. Summary of results from AbsciGen vs. RFantibody benchmarking experiments. The 
AbsciBind Score is computed as the average of ipTM and Antibody-Aligned ipTM scores 
from the AbsciBind protocol. Metrics are computed across all targets assessed. Results are 
reported as mean +/- standard deviation. * indicates 𝑝 < 0.001  by Mann-Whitney U. Best 
overall is marked in bold. 
 

 
Figure 7. Distribution of AbsciBind Scores shows that AbsciGen generates designs with 
higher AbsciBind Scores than RFantibody. 
 
OASis score distributions for sequences generated by AbsciGen vs. RFantibody for COL6A3, 
AZGP1, CHI3L2, and IL36RA suggest that AbsciGen achieves significantly higher humanness 
scores than RFantibody (Figure 8). We suspect this is due to IgDesign2’s fine-tuning on 
antibody-antigen complexes, which ProteinMPNN lacks. 
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Figure 8. Distribution of OASis percentile scores for sequences generated by both models 
across four targets. Higher percentiles suggest sequences are more likely to exhibit human-
like antibody qualities.  

 

3.2 SPR Identifies Multiple Hits per Target 
 
SPR identified three Origin-1 hits against COL6A3, four against AZGP1, one against CHI3L2, 
and one against IL36RA (Figures 9-12). As noted in the Methods, we screened all designs 
against at least two non-antigen commercial protein targets (“off-targets”) to assess 
polyspecificity, and all antigens against unintended designs to assess target stickiness. All of 
the aforementioned hits demonstrated binding to their designed antigen, did not bind to 
unintended designs, and did not bind to the off-target proteins based on binding specificity 
criteria described in Supplement §7.8.2. This result inspires confidence that Origin-1 can de 
novo design antibody binders to novel epitopes. Additional binding results and measured 
binding affinities are reported in Supplement §7.8.2. 
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Figure 9. In vitro experimentation confirms that Origin-1 generated a de novo binder against 
a novel epitope on COL6A3. (A) SPR demonstrates that the top design binds to COL6A3 in 
mAb format and does not bind to either of two unintended targets (“Off-Target 1” and “Off-
Target 2”). (B) BLI confirms that the top design binds to COL6A3 in Fab format. (C) 
Complexation experiment confirms that the top design, in Fab format, binds to COL6A3 in 
solution. (D) Cryo-EM of top design complexed with COL6A3 confirms epitope-specificity 
and atomic accuracy of the Origin-1 computational model. (E) CDR-specific analysis of 
model vs. solved complex structure confirms atomic accuracy. 
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Figure 10. In vitro experimentation confirms that Origin-1 generated a de novo binder against 
a novel epitope on AZGP1. (A) SPR demonstrates that the top design binds to AZGP1 in mAb 
format and does not bind to either of two unintended targets (“Off-Target 1” and “Off-
Target 2”). (B) BLI confirms that the top design binds to AZGP1 in Fab format. (C) 
Complexation experiment confirms that the top design, in Fab format, binds to AZGP1 in 
solution. (D) Cryo-EM of top design complexed with AZGP1 confirms epitope specificity and 
atomic accuracy of the Origin-1 computational model. (E) CDR-specific analysis of model 
vs. solved complex structure confirms atomic accuracy. 
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Figure 11. In vitro experimentation confirms that Origin-1 generated a de novo binder against 
a novel epitope on CHI3L2. (A) SPR demonstrates that the top design binds to CHI3L2 in mAb 
format and does not bind to either of two unintended targets (“Off-Target 1” and “Off-
Target 2”). (B) BLI confirms that the two optimized variants bind to CHI3L2 in Fab format. (C) 
Complexation experiment confirms that optimized variant 1, in Fab format, binds to CHI3L2 
in solution. (D) Origin-1 computational model of top design in complex with CHI3L2 is shown. 
 
 



 22 

 
Figure 12. In vitro experimentation confirms that Origin-1 generated a de novo binder against 
a novel epitope on IL36RA. (A) SPR demonstrates that the top design binds to IL36RA in mAb 
format and does not bind to either of two unintended targets (“Off-Target 1” and “Off-
Target 2”). (B) BLI confirms that the two optimized variants bind to IL36RA. (C) Complexation 
experiment confirms that optimized variant 1, in Fab format, binds to IL36RA in solution. (D) 
HEKBlue functional assays demonstrate that the top two optimized variants antagonize 
IL36RA-mediated inhibition. (E) Origin-1 computational model of top design in complex with 
IL36RA is shown. 

 

3.3 BLI and Complexation via aSEC Confirm Binding 
 
To further validate hits identified via SPR, we performed both on-target and off-target BLI 
experiments in mAb format. Hits in mAb format were assessed against their intended target; 
BLI confirmed one hit against COL6A3 (Figure 9), and two hits against AZGP1 (Figure 10). 
Limited mAb BLI binding was observed for the hits against CHI3L2 and IL36RA (data not 
shown). All hits lacked binding against a negative control antigen. 
 
In preparation for downstream complexation experiments, BLI-confirmed hits were 
reformatted as Fabs and were re-assessed for binding in BLI. Both AZGP1 hits were 
confirmed to bind in both assay orientations (Figure 10, antigen-immobilized data not 
shown). The COL6A3 hit bound in the original orientation of the assay (antibody-
immobilized, Figure 9), but failed to bind in the flipped orientation (antigen-immobilized, data 
not shown). We hypothesize that this hit bound in only one orientation due to the small size 
of the antigen and potential tag interference impacting the binding interface when the 
antigen was immobilized on the probe. 
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The most promising hits against COL6A3 and AZGP1 were then complexed with their 
respective targets in Fab format. Complexes were successfully formed for both design-
target pairs, confirming binding (Figures 9 and 10; Supplement §7.8.4). 

 

3.4 Optimization of Zero-Shot Designs Improves Affinity and 

Confirms Origin-1’s Success in Binder Identification 
 
As mentioned above, SPR-identified hits for CHI3L2 and IL36RA could not subsequently be 
confirmed by BLI. We reasoned the lack of BLI confirmation was due to low affinity (KD > 
2 µM) and chose not to fully characterize them due to the large amount of antigen that 
would be required. 
 
Instead, we used our lead optimization platform to affinity-mature not only the SPR-
identified hits against CHI3L2 and IL36RA, but also the hits against COL6A3 and AZGP1 that 
were confirmed in BLI. For each of these hits, we designed optimization libraries composed 
of single-mutants relative to the parental hit sequences. This approach resulted in affinity 
improvements across all hits, with the greatest improvement (68-fold) observed for IL36RA 
(Figure 12). 
 
We repeated SPR and BLI experiments using the top affinity-matured designs against 
CHI3L2 and IL36RA, which demonstrated approximately 4X and 68X increases in affinity 
relative to their parent designs, respectively. We also validated binding by complexing 
CHI3L2 and IL36RA with their respective top affinity-matured design variants (Figures 11 and 
12; Supplement §7.8.4). This result confirms that Origin-1 was able to generate binders 
against CHI3L2 and IL36RA and further demonstrates the utility of our platform to identify 

and rescue even very weak binders.  

 

3.5 Developability Assessments  
 
All Origin-1 binders were evaluated across a panel of developability and material quality 
properties, including polyreactivity, polydispersity, self-association, hydrophobicity, melting 
temperature, and purity. COL6A3, CHI3L2, and IL36RA binders met therapeutically 
acceptable criteria for these developability properties, aside from one hydrophobicity flag 
associated with the IL36RA binder. For AZGP1, our top binder was flagged for self-
association, hydrophobicity, and polyreactivity (Table 4). Methods for developability 
assessments are reported in Supplement §7.8.5. 
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Target Polyreactivity 
(Anti-Insulin, 
RNS) 

Polyreactivity 
(Anti-DNA, 
RNS) 

HIC 

(RRT) 
AC-
SINS 
(nM) 

DSF, Tm1  
(°C) 

DLS 

(Cumulant PDI) 

COL6A3  3.5 3.8 1.03 1.6 68.00 0.00 

AZGP1 15.8 8.5 N.D. 25.7 77.86 0.08 

IL36RA 3.0 3.6 1.19 0.6 70.60 0.00 

CHI3L2 3.6 4.0 0.91 -0.1 70.20 0.01 

 

Table 4. Summary of developability results from top binders across COL6A3, AZGP1, IL36RA, 
and CHI3L2; RNS = Range Normalized Sum; HIC = Hydrophobic Interaction Chromatography, 
RRT = Relative Retention Time; AC-SINS = Affinity-Capture Self-Interaction Nanoparticle 
Spectroscopy; DSF = Differential Scanning Fluorimetry; DLS = Dynamic Light Scattering; PDI 
= Polydispersity Index; N.D. = Not Detected. 

 

3.6 Cryo-EM Confirms Atomic Accuracy of Designs Against 

COL6A3 and AZGP1  
 
Cryo-EM was used to solve the structures of the top design against each of COL6A3 and 
AZGP1. The experimental structures were resolved with 3 Å and 3.1 Å resolution, respectively, 
and show high fidelity with the designed structures generated by Origin-1, confirming both 
epitope-specificity and atomic accuracy (Figures 9 and 10). 
 
The computational model of the COL6A3 design complex and the corresponding 
experimental complex structure have an all-atom global RMSD of 2.56 Å, interface RMSD of 
0.96 Å, ligand RMSD of 1.48 Å, and a DockQ [59] of 0.83. When overlaid, the CDRs have all-
atom RMSDs of 0.738 Å, 0.850 Å, 1.486 Å, 1.098 Å, 0.817 Å, and 0.661 Å for LCDR1, LCDR2, 
LCDR3, HCDR1, HCDR2, and HCDR3, respectively. 
 
The computational model of the AZGP1 design complex and the corresponding 
experimental complex structure have an all-atom global RMSD of 1.79 Å, interface RMSD of 
1.35 Å, ligand RMSD of 1.9 Å, and a DockQ of 0.73. When overlaid, the CDRs have all-atom 
RMSDs of 2.056 Å, 1.904 Å, 1.487 Å, 0.751 Å, 1.020 Å, and 1.411 Å for LCDR1, LCDR2, LCDR3, HCDR1, 
HCDR2, and HCDR3, respectively. 

 

3.7 HEKBlue Assessment Confirms Functionality of IL36RA Binder  
 
The top two affinity-matured variants along with the parent IL36RA design were assessed 
for function in a HEKBlue assay. While the parent was not functional, the affinity-matured 
variants displayed antagonism that correlated with soluble protein affinity, suggesting a 
clear path to a highly potent molecule. The highest affinity variant achieved an EC50 of 104 
nM. 
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4 Discussion  
 
Here we develop and experimentally validate Origin-1, an AI platform for de novo antibody 
design against “zero-prior” epitopes. We describe the methodology underlying Origin-1’s 
component AI models: AbsciDiff and IgDesign2 (together, AbsciGen) for generative 
structure and sequence design, respectively, and AbsciBind for design scoring and 
selection for downstream experimental validation. Our in silico benchmarking of AbsciGen 
and AbsciBind confirms that the respective strategies compete with, and outperform 
existing protocols for antibody-antigen complex design and evaluation (Table 3, Figures 7 
and 8), and our in vitro assessments confirm that in fewer than one hundred attempts, 
Origin-1 can generate designs that bind with specificity and are developable (Figures 9-12, 
Table 4). We show that our modeled antibody designs are consistent with their experimental 
structures with atomic accuracy (Figures 9 and 10), and we demonstrate our ability to use 
AbsciBind Scores to identify single-mutant variants of our zero-shot designs that are 
functional (Figure 12). Together, these results motivate further investigation into Origin-1’s 
potential to generate antibody therapeutic candidates against novel disease targets. 
 
One limitation of the current effort is that the hit rates obtained by Origin-1 in a zero-shot 
manner were lower (at most four from approximately 100 designs per target) than hit rates 
that have recently been reported by others in the field [23-27]. In interpreting this, one 
should consider both the design challenge undertaken and the extent of experimental 
validation conducted to support a reported hit rate. Here, to our knowledge, we extend the 
complexity of our design challenge beyond what others have reported by designing 
antibodies against “zero-prior” epitopes for which there are no publicly available complex 
structures that directly provide epitope residue inputs to guide antibody design. In other 
words, Origin-1 had to identify antigen residues that were viable candidates for antibody 
binding and sample correctly from these residues to guide design toward these regions, in 
addition to correctly scoring designs and selecting winning candidates from among those 
proposed. We increased the task complexity in this way to test Origin-1 in a setting that more 
closely resembles a challenging drug design effort, where often the epitope itself is 
unknown and must be determined de novo. Beyond increasing the complexity of the design 
challenge, we also set strict criteria for labeling a design a binder by requiring designs to 
meet criteria for binding across multiple orthogonal assays as well as confirming designs 
bind only to their intended targets and that antigens bind only to their intended designs. Our 
results indicate that Origin-1 is capable of designing antibodies that bind to targets of 
interest with limited input guiding design localization, and with stringent hit definition criteria, 
inspiring confidence in the reproducibility, reliability, and translatability of our results. We 
provide the comprehensive set of in vitro data generated in the course of this effort and 
encourage our colleagues in the field to leverage these datasets to benchmark their own 
efforts in antibody design.  
 
Future development should prioritize improving AI antibody design protocols such that they 
directly address the most significant challenges impacting traditional antibody discovery 
campaigns today: target difficulty, costs, and timelines. Improvements in these areas will 
ensure that our technology continues to progress toward addressing unmet needs that 
ultimately benefit patients requiring innovative, cost-effective solutions to treat their 
ailments. 
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7 Supplementary Material 
 

7.1 AbData Inclusion Criteria 
 
We applied both temporal and sequence homology filters to AbData-curated complexes to 
eliminate overlap between our training, validation, and test sets. Temporal filters were 
applied first, whereby all complexes from PDB entries released before 2024-01-01 were 
included in training, between 2024-01-01 and 2024-09-30 in validation, and between 2024-
09-01 and 2025-07-10 in test. We applied specific sequence homology filters per split, where 
homology filters defined using the training set were applied to the validation and test set, 
and filters defined using the validation set were applied to the test set. For antibody-antigen 
complexes specifically, we removed all entries containing an antigen with greater than 40% 
sequence similarity to any antigen in the relevant reference set. For protein-protein 
complexes, we removed all entries for which either chain had greater than 40% sequence 
similarity to any chain in the relevant reference set.  
 
Finally, we filtered for redundancy by clustering the antigen and Fv sequences using 40% 
and 100% sequence identity, respectively. Within each cluster-pair, we selected only a single 
example containing optimal resolution, proportion of resolved residues, and interface 
contacts. For protein-protein interactions, we used a similar strategy, adjusted by clustering 
interface chains at 95% sequence identity and selecting within cluster pairs. 
The final quantities of antibody-antigen entries in the training / validation / test set splits 
were 3242 / 63 / 84, respectively, covering 2848 / 62 / 84 respective unique HCDR3 
sequences. The final quantities of protein-protein complexes were 29835 / 356 / 322, 
respectively. 
 
We provide a comprehensive list of our antibody-antigen inclusion criteria for AbData 
below:  

• No Fvs without a heavy chain 
• No unbound Fvs 
• No Fvs bound to short antigens, defined as antigens containing fewer than 15 

residues 
• No Fvs with small epitopes, defined as epitopes containing fewer than 5 residues 
• No Fvs with any missing CDR residues 
• No Fvs with buried surface area less than 500 Å2 at the antibody-antigen interface 
• No Fvs where greater than 50% of CDR contacts occurred with non-protein 

molecules 
• Resolution must be less than 9 Å 

 
Protein-protein interactions were additionally filtered as follows: 

• Only dimeric interfaces (i.e. no additional chains at the interface) 
• No interfaces with buried surface area < 500 Å2 
• No complexes with > 2500 residues 
• No complexes with < 50 residues 

 
For antibody-antigen validation and test sets, we applied the following filters in addition to 
the above: 
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• No Fvs with cysteines in CDRs 
• Resolution must be less than 3.5 Å 

 

7.2 Structure Design with AbsciDiff 
 
Design Region Atom Representation 
AbsciDiff enables open-ended generation of amino acid sidechains by representing all 
design region residues in Atom14 notation, with excess “virtual” atoms placed at each 
residue’s Cα position (Supplementary Figure 1). This superposition technique allows the 
model to generate structures without committing to specific residue identities during 
diffusion. The sequence can subsequently be inferred from the generated backbone 
structure using methods such as IgDesign2. 
 

 
Supplementary Figure 1: An example of AbsciDiff’s atom superposition technique. Non-
design region amino acids are represented with their true atomic structure since their 
identities are fixed a priori. Design region residues (see Leu in blue) use the Atom14 
representation, where excess virtual atoms beyond the residue’s actual atom count are 
placed at the Cα position.  
 
Partial Diffusion 
In addition to the modifications described in §2.3.1, AbsciDiff’s diffusion module also includes 
key modifications for partial diffusion. In partial diffusion, sampled datapoints are initialized 
from a partially noised version of the input rather than pure noise. When enabled, the 
diffusion process begins at noise level: 𝜎4546 = 𝜎"#$%&#."&'($)'* 
The noised initialization is given by: 𝑥! = 𝜎4546 · 𝜖 + 𝑥785946485:9 
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where 𝜖 ∼ 𝒩(0, 𝐼), and 𝑥785946485:9 corresponds to the conditioned coordinates (antigen and 
framework). This mechanism enables the model to focus the sampling process when full, 
from-scratch generation is not required, allowing refinement of existing favorable designs 
or diversification of fixed binding complexes. 

 

7.3 Coordinate Initialization for RFantibody Benchmarking 
 
De novo antibody design using RFantibody required careful attention to coordinate 
initialization to achieve reasonable outputs. Without modification, we observed reduced 
performance compared to the supervised benchmarking setting, including chain breaks in 
predicted loop structures and glycine-dominated sequences from ProteinMPNN. 
 

 
Supplementary Figure 2: RFantibody loop quality depends on coordinate initialization: chain 
breaks appear when loop coordinates are placed at the origin (left), but not when idealized 
coordinates are provided (right). Provided framework PDB files all include ground-truth loop 
coordinates, motivating our pre-processing changes for a fair de novo benchmark. 
 
To avoid potential information leakage under the de novo setting, our pipeline preprocesses 
structures such that CDR loop coordinates are placed at the origin for the designed number 
of residues, and CDR sequences are populated with glycines. While RFantibody fully masks 
features for designed loops, we found that initial loop coordinates influence the diffusion 
process. Specifically, RFantibody's reverse diffusion implementation during inference 
parameterizes the initial noise distribution on the input Cα coordinates at timestep 𝑡 = 𝑇 , 
(rather than sampling from an unconditional prior) causing spatial biases in input 
coordinates to persist through noising. 
 
By default, when a designed loop length differs from the input “framework” PDB, RFantibody 
initializes coordinates using idealized backbones with random noise (via 
“adjust_loop_lengths”). However, when the loop length already matches—as in our pipeline, 
where we prepare PDBs for each desired length with origin-initialized CDR coordinates —
the model uses the provided coordinates directly. What’s more, provided examples in the 
public RFantibody release include actual loop coordinates from the RCSB PDB entry. As such, 
to ensure a fair benchmark on examples lacking provided loop coordinates while also 
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limiting changes to the RFantibody codebase, we applied an idealized initialization based on 
loop “dilation” logic to all CDR coordinates. 
Specifically, 𝑥;<=(0) ← 𝑥49:@A + 𝜖, 𝜖 ∼ 	𝒰(−5, 5, )%, 
 𝑥49:@A = {𝑁(−0.527, 1.359, 0), 𝐶𝛼(0, 0, 0), 𝐶(1.523, 0, 0)}. 
 
This approach does not fully decouple designs from initialization—loop length and random 
seed still influence the result—but it respects the intention of the existing loop length dilation 
methodology without introducing more substantial modifications. 

 

7.4 Additional AbsciGen Results 
 

7.4.1 Supervised Task Design and Results 
 
Experimental Setup 
We evaluate structure and sequence generation against targets with known antibody 
binders. We do so by taking a wild-type complex, masking CDR and inter-chain distance 
features, and providing the remaining data features, along with native epitope indices and 
CDR lengths, to each method. Both methods execute their full pipelines: AbsciGen 
(AbsciDiff followed by IgDesign2) versus RFantibody (RFdiffusion [9] followed by 
ProteinMPNN [17]). For sequence design, IgDesign2 autoregressively designs all six CDR 
sequences conditioning on structural context, while ProteinMPNN uses default settings; 
both produce eight sequences per structure. 
 
Metrics: We use DockQ [59] and antigen-aligned HCDR3 Root Mean Square Deviation 
(RMSD) to assess structural fidelity, and HCDR3 amino acid recovery (AAR) to assess 
sequence recovery. While design models are inherently open-ended, we reason that 
successful models should recover the wild-type structure and sequence given sufficient 
sampling and training objective.  
 
Dataset: We select 44 high-quality antibody-antigen complexes from AbData, balancing 
target diversity, complex size, and training date cutoff. All complexes are cropped to 512 
residues using our spatial cropping method (§2.3.1). 
 
Sampling: For each complex, we generate 𝑛 = 100 final structures and 𝑚 = 8 sequences per 
structure. AbsciDiff produces 𝑀 = 24 structure samples per generation process, which are 
ranked (§2.3.1) by the confidence module and reduced to 𝐾 = 3  final outputs. For this 
analysis, we uniformly randomly sample 𝐾 = 1 of these to match the number of designs 
between pipelines. 
 
Supervised Task Results 
Supplementary Table 1 demonstrates that AbsciGen substantially outperforms RFantibody 
across all metrics. Lower HCDR3 RMSD indicates better structural agreement with the native 
binding pose, while higher DockQ scores (threshold ≥ 0.23 for acceptable quality) indicate 
more accurate antibody-antigen interface geometry. For sequence recovery, AbsciGen 
achieves substantially higher maximum  HCDR3 amino acid recovery (AAR) averaged across 
targets (0.647 vs. 0.371), demonstrating IgDesign2’s effectiveness. We note that sequence 
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recovery is coupled to structure quality - IgDesign2 benefits from higher-fidelity structures 
produced by AbsciDiff. 
 

 
 

HCDR3 RMSD (Å) ¯ DockQ ­ DockQ Success ­ HCDR3 AAR ­ 

Min Median Min Median Min Median Min Median 

RFantibody 6.432 13.632 0.367 0.128 77.3% 6.8% 0.371 0.117 

AbsciGen 3.256* 8.166* 0.509* 0.235* 95.5% 47.7% 0.647* 0.401* 

 

Supplementary Table 1: Supervised benchmarking results. Metrics are computed for each 
structure or sequence generation, aggregated per-target using min, max, or median, then 
averaged across targets. DockQ Success reports the fraction of targets with aggregated 
DockQ > 0.23. HCDR3 RMSD is computed after aligning on the target structure. * indicates 𝑝	 < 	0.001 by Mann-Whitney U. Best overall is marked in bold. 
 
Supplementary Figure 3 shows per-target results, where AbsciGen achieves acceptable 
DockQ scores (≥ 0.23) on 95.5% of targets, compared to 77.3% for RFantibody.  
 

 
Supplementary Figure 3. Per-target comparison of maximum DockQ scores for AbsciGen 
and RFantibody. The acceptable threshold (DockQ = 0.23) is indicated by the dashed line. 
 
 

 
Supplementary Figure 4. Per-target comparison of median DockQ scores for AbsciGen and 
RFantibody across all targets in the supervised benchmarking task. The acceptable 
threshold (DockQ = 0.23) is indicated by the dashed line. 
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Supplementary Figure 5. Distribution of supervised benchmark metrics for AbsciGen and 
RFantibody across all generated samples. Lower HCDR3 RMSD indicates better structural 
agreement with the native binding pose. 
 

7.4.2 Additional Unsupervised Task Results 
 

 
Supplementary Figure 6. Per-target comparison of mean AbsciBind Scores for AbsciGen 
and RFantibody on the unsupervised design task. The original RFantibody implementation 
without our initialization modification is included for comparison. 
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Supplementary Figure 7. Per-target comparison of median AbsciBind Score scores for 
AbsciGen and RFantibody on the unsupervised design task. Across all targets, AbsciGen 
consistently achieves higher median AbsciBind Scores than RFantibody, indicating 
improved interface quality in its generated designs. The original RFantibody implementation 
without our initialization modification is included for comparison. 
 

 
 
Supplementary Figure 8. Epitope contact conditioning study. We evaluate how varying the 
number of provided epitope contact residues impacts the binding, as measured by 
AbsciBind Score. No significant improvement in the fraction of designs achieving AbsciBind 
Score ≥ 0.5 is observed with increasing contact information. Notably, the maximum 
AbsciBind Score for AbsciGen tends to decrease as more epitope contacts are specified, 
whereas RFantibody shows an increasing trend. We hypothesize that adding contact 
constraints may restrict the pose diversity for AbsciGen, while RFantibody may benefit from 
enhanced conditioning, leading to a higher baseline performance. Left: Percentage of 
designs with AbsciBind Score ≥ 0.5. Right: Maximum AbsciBind Score observed across 
generated samples for each method. 
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7.4.3 Sequence Diversity 
 
We assess the diversity of generated HCDR3 sequences by evaluating the fraction of unique 
sequences and pairwise sequence similarity (PSS) at two aggregation levels.  
 
Pairwise Sequence Similarity (PSS) 
For variable-length CDR sequences 𝑠0  and 𝑠B , we compute the normalized Levenshtein 
distance as 𝑑g𝑠0 , 𝑠Bh = C:DEF+,F,H

I@J	(|F+|,KF,K)
, 

where Lev denotes Levenshtein distance. Pairwise Sequence Similarity is then defined as PSSg𝑠0 , 𝑠Bh = 1 − 𝑑(𝑠0 , 𝑠B), with lower values indicating greater sequence diversity.  
 

 
Supplementary Figure 9. Pairwise HCDR3 sequence similarity matrices, grouped by target. 
Each pixel shows the PSS score between two sequences generated for the same target 
(red = high similarity/low diversity, blue = low similarity/high diversity) from our in silico 
benchmark analysis. A single generated sequence was randomly selected for every 
generated structure, resulting in 102x102 sequence comparisons per target. Sequences 
are hierarchically clustered within each target block. RFantibody (left) shows more diverse 
outputs, while AbsciGen (right) generates more similar sequences within each structure. 
However, both methods achieve high diversity at the target level due to varied backbone 
generation, as summarized in Supplementary Table 2. 

 
Supplementary Table 2 reveals that AbsciGen exhibits low sequence diversity for a given 
structure: only 48% of generated HCDR3 sequences are unique (compared to 89% for 
RFantibody), with a PSS of 0.92 indicating near-identical outputs within each structure. This 
suggests that AbsciGen’s sequence design module produces limited variation when 
conditioned on a particular backbone conformation. At the target level, however, both 
methods achieve 100% unique sequences, indicating that AbsciGen’s generated structures 
provide sufficient diversity in the context of the full pipeline. In this setting, RFantibody 
maintains lower PSS (0.21 vs. 0.46), indicating greater sequence diversity. 
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Structure-level Target-level 

Frac Unique ­ PSS ¯ Frac Unique ­ PSS ¯ 

RFantibody 0.90 ± 0.01* 0.74 ± 0.01* 1.00 ± 0.00 0.20 ± 0.01* 

AbsciGen 0.49 ± 0.03 0.92 ± 0.00 1.00 ± 0.00 0.46 ± 0.01 

 

Supplementary Table 2. HCDR3 sequence diversity metrics. Fraction of unique sequences 
and pairwise sequence similarity (PSS) computed at structure-level (within each structure) 
and target-level (pooled across all structures per target). Metrics computed across 4 
targets, reported as mean ± standard deviation. Best values for each metric are highlighted 
in bold. * indicates 𝑝	 < 	0.05 by Mann-Whitney U. 
 

 
Supplementary Figure 10. Top generated HCDR3 sequences (𝑛 = 8) across target, epitope, 
and CDR-length design specifications per AbsciGen. Configurations were selected based 
on the highest median ipTM score for each pipeline. Each row shows sequences for the 
design configuration that achieved the best performance for each method. Configurations 
producing high scoring samples by AbsciGen are in many cases not found to score highly 
under RFantibody. Top samples ranked by RFantibody are shown in Supplementary Figure 11. 
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Supplementary Figure 11. Top generated HCDR3 samples (𝑛 = 8) of target, CDR-length, and 
epitope design configurations by median ipTM as ranked by RFantibody. Despite ranking by 
samples of top configurations under RFantibody, AbsciGen often scores competitively. 
 

7.4.4 Structural Diversity 
 
To quantify structural diversity, we compute pairwise backbone RMSD (𝑁, 𝐶𝛼, 𝐶, 𝑂  atoms) 
within groups of comparable design configurations that share the same antigen target, CDR 
lengths, and framework lengths. In our benchmarking, we identified over 500 groups of 
comparable designs for both pipelines, with each group containing up to 48 members with 
identical topology. We report two complementary metrics, averaging over all valid groups 
and pairs of group members.  
 
Self-Aligned RMSD 
As reported in Supplementary Table 3, this metric measures conformational diversity by 
optimally superimposing the target region (HCDR3, LCDR3, or full antibody Fv) onto itself 
using the Kabsch algorithm [60] before computing RMSD. This captures the range of loop 
conformations sampled by each method, independent of global orientation. 
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 Antibody RMSD (Å) ­ HCDR3 RMSD (Å) ­ LCDR3 RMSD (Å) ­ 

AbsciGen 2.72 ± 1.22 1.09 ± 0.22 0.78 ± 0.31 

RFantibody 4.83 ± 0.69* 1.57 ± 0.23 1.26 ± 0.15* 

 

Supplementary Table 3. Self-aligned structural diversity. Pairwise backbone RMSD computed 
after aligning each region onto itself, measuring conformational diversity independent of 
global orientation. Metrics are computed across all four unsupervised targets, reported as 
mean ± standard deviation. Best values in bold. * indicates 𝑝 < 0.001 by Mann-Whitney U. 
 
Antigen-Aligned RMSD 
As reported in Supplementary Table 4, this metric measures binding pose diversity by first 
superimposing structures using the antigen backbone, then computing region RMSD 
without additional alignment. This captures how diversely each method positions CDR loops 
relative to the epitope—a metric more relevant to functional diversity in antigen recognition. 
RFantibody generates greater self-aligned and antigen aligned structural diversity than 
AbsciGen across all measured regions, although the differences are only statistically 
significant for self-aligned antibody and HCDR3 RMSD. 
 

 Antibody RMSD (Å) ­ HCDR3 RMSD (Å) ­ LCDR3 RMSD (Å) ­ 

AbsciGen 6.66 ± 2.21 4.18 ± 1.70 4.51 ± 1.66 

RFantibody 8.16 ± 1.77 5.06 ± 1.67 5.75 ± 1.60 

 

Supplementary Table 4. Antigen-aligned structural diversity. Pairwise backbone RMSD was 
computed after superimposing structures on the antigen backbone, measuring binding 
pose diversity in CDR loop positioning relative to the epitope. Metrics computed across four 
targets, reported as mean ± standard deviation. Best values highlighted in bold. No 
differences were determined to be significant by Mann-Whitney U. 
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Supplementary Figure 12. Self-aligned structural diversity comparison. Pairwise backbone 
RMSD (𝑁, 𝐶𝛼, 𝐶, 𝑂 atoms) was computed within groups of comparable antibody structures 
sharing the same antigen target, CDR lengths, and framework lengths. Each region was 
optimally superimposed onto itself using the Kabsch algorithm before computing RMSD, 
measuring conformational diversity independent of global orientation. (Top) Boxplots show 
the distribution of mean pairwise RMSD across comparable groups for antibody Fv, HCDR3, 
and LCDR3 regions. Individual points represent comparable groups (𝑛 = 512 per method). 
(Middle) Kernel density estimates showing the full distribution of RMSD values. (Bottom) 
Mean RMSD per antigen target, showing consistent trends across diverse antigens. 
RFantibody (black) exhibits greater structural diversity than AbsciGen (red) across all 
regions and targets. 
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7.5 AbsciBind Extended Methodology 
 
Effectively scoring and ranking designs is fundamental to the success and scalability of an 
AI pipeline for antibody design. While folding models have shown strong performance for 
scoring and filtering general protein binder designs, their potential to translate for antibodies 
remains unclear, given reports of limited accuracy for antibody-antigen complex prediction 
[33, 34].  
 
We curate a protocol, AbsciBind, as a scoring method for antibody-antigen complexes, 
leveraging the advantages of existing folding approaches and identifying workarounds to 
their limitations. Folding algorithms such as AlphaFold (AF) [7] and AlphaFold-Multimer 
(AFM) [30] take protein sequences, structural templates from homologs, and multiple 
sequence alignments (MSAs) as inputs. For AF and AFM, templates are encoded by amino-
acid identity, Cβ distance matrices, and backbone torsion angles. Prior work demonstrated 
that AFM confidence metrics can be repurposed to score candidate (“decoy”) structures 
by either “disguising” the decoy as the model’s output from a previous (fictitious) recycling 
iteration and feeding it back through the network, in the style of AlphaFold-Multimer Initial 
Guess (AFM-IG) [61], or supplying the decoy as a template, using empty MSAs, masking side 
chains except for the Cβ atom, adding “virtual” Cβ atoms for glycine residues, and replacing 
template residues with gap symbols. The latter approach, known as AF2Rank [62], achieves 
strong decoy ranking performance on single-chain proteins. Although AFM masks inter-
chain Cβ distances during training and inference, exposing these distances via minor 
inference-time modifications enables the model to leverage cross-chain template 
information without retraining, as demonstrated by the AF_Unmasked method [45]. 
Motivated by this result, we attempted to apply AF2Rank with cross-chain templates to 
antibody–antigen complexes, but our results showed that this approach yielded high false-
negative rates (Supplementary Figure 13), with correct docked poses often not preserved in 
AF2Rank outputs. We attribute this failure to masking template amino-acid tokens, which 
causes the model to ignore critical information from antibody–antigen complex templates.  
 
This observation inspired us to implement several adjustments to the native AFM protocol: 
we provide the amino acid sequence of an antibody-antigen complex as the input; we 
supply the designed or decoy structure as a multimer template; we retain template amino-
acid tokens instead of replacing them with gap symbols; we mask all template side chains 
except for the Cβ atoms; we disable AFM’s default masking of inter-chain template 
distances; and we use single-sequence mode. To ensure deterministic inference, we 
disable dropout and Evoformer residue masking. We call this updated protocol AbsciBind. 
 
To assess the impact of implementing these changes prior to utilizing the AbsciBind 
protocol to select AbsciGen designs as part of the Origin-1 pipeline, we tested the AbsciBind 
protocol, AFM-IG, and AF2Rank’s abilities to recover native antibody-antigen poses by 
deploying these models on a set of antibody-antigen complexes released after the training 
cutoff for AFM v2.3. We found that while AFM-IG and AF2Rank (with cross-chain templates) 
often failed to recover the native poses, our AbsciBind protocol succeeded (Supplementary 
Figure 13). We identified one AFM v2.3 model checkpoint (model_2_multimer_v3) that best 
recapitulated experimental antibody-antigen complexes in the PDB when used in our 
AbsciBind pipeline (Supplementary Figure 14). These results motivated us to proceed with 
AbsciBind as our primary protocol for establishing an antibody design scoring method.  
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Filtering 
Consistent with the logic underlying computational filtering methods that rely on folding 
methodologies for protein design quality assessments, we assumed that AbsciGen designs 
should be discarded if the 3D structure predicted by the AbsciBind protocol deviated 
substantially in tertiary and/or quaternary structure from the AbsciGen structure provided 
as a template input. To this end, we computed structural consistency scores that quantified 
the similarity between the designed and predicted complexes and used these scores to 
filter our designs. Specifically, we first merged the heavy and light antibody chains into a 
single Chain A, and all antigen chains into a separate Chain B. We then computed the ligand 
root mean square deviation (L-RMSD) as follows: (1) the ligand and receptor were 
respectively defined as the shorter and longer of Chains A vs. B; (2) all non-backbone atoms 
were removed from both the designed and predicted complexes; (3) the rigid-body 
transformation that minimized the RMSD between the receptor chains was computed; and 
(4) the L-RMSD was defined as the RMSD between the ligand chains after applying this 
transformation. Any prediction with an L-RMSD greater than 5 Å relative to the designed 
complex was discarded. 

 
AbsciBind Protocol ipTM Score 
AFM’s interface-predicted TM (ipTM) score [30] measures the model’s confidence on the 
global packing of a protein complex. In applying the ipTM score to the antibody-antigen 
problem, the value of this score is also influenced by the model’s confidence in the relative 
arrangement between heavy and light antibody chains, as well as between antigen chains if 
several are present. To reduce the weight of contributions to ipTM coming from intra-
antibody or intra-antigen residue pairs, we first merged the antibody heavy and light chains 
into a single chain Ab of length LLM, and all antigen chains into a single chain Ag of length LLN. 
Then, ipTM for this fictitious dimer can be expressed as 
 ipTM  = maxvipTMLM(Ag; 𝐿686),  ipTMLN(Ab; 𝐿686){ 
 
where 𝐿686 =  𝐿LM +  𝐿LN is the total number of amino acids in the complex and, for any two 
chains 𝐴, 𝐵 in a complex and any 𝐿 > 0, we define 

ipTMO(𝐵; 𝐿) = max	
0∈O

~ 1|𝐵|�pTM0B(𝐿)
B∈Q

� 
 
where 

pTM0B(𝐿) = ∑ 𝑝0BR · /
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The probabilities 𝑝0BR  are outputted by AFM and satisfy ∑ 𝑝0BRVW
R2/ =  1. The normalization factor is 

defined as,  𝑑!(𝐿) = � 1.24(𝐿 − 15)//% − 1.8,				𝐿 ≥ 19	1,																																											𝐿 < 19	. 
 
Because the normalization factor 𝑑!(𝐿686)  depends on the antibody length in the original 
formulation of ipTM, the relative ranking of designs targeting the same antigen but with 
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different CDR lengths can be systematically affected. To mitigate this effect, we introduce 
an Antibody-Aligned ipTM, defined as: ipTMLM(Ag; 𝐿LN). 
 
Related one-way alignment scores and similar modifications to the normalization factor d! 
were previously introduced in [63]. 
 
In silico Benchmarking of the AbsciBind Protocol 
To assess the AbsciBind protocol’s appropriateness for scoring and selecting AbsciGen 
designs, we tested AbsciBind’s ability to discriminate true binders from non-binders in an 
experimental set of eight antibody-antigen systems [21, 46]. We compared the AbsciBind 
protocol’s performance with the performance of six established reference approaches 
(GeoFlow-V3, Geoflow-V2, AFM-IG, Protenix, Boltz-2, and Chai-1) [27]. 
 
Results showed that AbsciBind achieves the strongest average binder-non-binder 
discrimination performance as measured by AUROC (Figure 5), using the maximum ipTM 
score across all five AFM v2.3 model checkpoints. Consistent with the prior observation that 
model_2_multimer_v3 (model 2) checkpoint accurately recapitulates ground-truth PDB 
structures, we find that this “Selected AbsciBind ipTM” score (model 2 only) closely tracks 
“Best AbsciBind ipTM” score (best from all 5 models) across targets. In several cases, 
including ACVR2B, TSLP, IL36R, and C5, the Selected score achieved nearly identical, and in 
one case higher, AUROC values compared with the Best ipTM score. Importantly, using only 
model 2 yields an approximately 80% reduction in runtime compared with evaluating 
designs with all five models. Given this substantial runtime reduction and the strong 
classification performance, model 2 was selected to support the AbsciBind protocol for the 
remainder of the present effort.  
 
We defined a final AbsciBind Score as the arithmetic mean of the default AbsciBind protocol 
ipTM score (computed over all antibody and antigen chains and interfaces) and the 
Antibody-Aligned ipTM score. We design this metric to integrate a global interface score 
with an antibody-aligned, consistently normalized assessment of the antibody-antigen 
interface’s quality and use this score to evaluate AbsciGen designs for de novo library design 
(§2.4.3) and to select mutant variants for lead optimization efforts (§2.4.4). 
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Supplementary Figure 13. Distribution of DockQ and ipTM scores for AlphaFold-Multimer 
(AFM) predictions generated using the initial-guess (AFM-IG), AF2Rank, and AbsciBind 
protocols. Colors and markers indicate the protocol used. The gray dashed line at y = 0.23 
marks the CAPRI threshold separating incorrect from acceptable predictions based on 
DockQ. DockQ scores are computed by comparing the merged antibody heavy–light chains 
against the antigen chain. All complexes were released after the AFM v2.3 training cutoff 
date (2021-09-30) and are non-redundant with respect to antigen sequences at a 40% 
sequence similarity threshold. 
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Supplementary Figure 14. Distribution of L-RMSD values for SAbDAb-generated structures. 
The left panel shows the histogram of scores, while the right panel shows the cumulative 
distribution function (CDF), indicating the fraction of structures below a given L-RMSD 
threshold. Notably, 85% of generated structures fall below an L-RMSD threshold of 5 Å, while 
90% fall below 10 Å. 

 

7.6 Library Design 
 

7.6.1 Structure and Sequence Search Strategy 

 

 
 

Supplementary Figure 15. Schematic illustrating inference-time search strategy involving 
progression through Wide Structure Search, to identify optimal design specifications, Deep 
Structure Search, to select top backbone structures, and Sequence Search, to select top 
sequences per backbone structure for experimental validation. 
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Supplementary Figure 16. Concentrating compute resources on high-confidence designs 
within defined search windows improves quality of top designs as assessed by AbsciBind 
Score. Solid line represents the mean (across multiple targets) of the top score within each 
target. Shaded areas represent 90% confidence interval. 
 
Wide Structure Search 
The first structure design step aimed to identify the design specifications (formatted as 
tuples of FWRs, CDR lengths, and epitope residue samples) that yielded structure-sequence 
pairs with the highest Antibody-Aligned ipTM Scores. 3360 combinations of design inputs 
were sampled and provided as inputs to AbsciDiff.  AbsciDiff was run with 𝑀 = 24 diffusion 
samples per trunk sample and 𝐾 = 3 selected samples out of 𝑀 diffusion samples, resulting 
in 3360 · 𝑀 = 80640  generated structure samples and 3360 · 𝐾 = 10080	 selected structure 
samples. IgDesign2 generated one top sequence per structure, and each structure-
sequence pair was scored using AbsciBind.  
 
Of these 10080 structures, we selected the top 5% of design strategies by maximum 
Antibody-Aligned ipTM Score (across the three structures) and the top 5% by median 
Antibody-Aligned ipTM Score (across the three structures) for a total of 1008 design 
strategies (with some redundancy, where the max and median overlap). These design 
strategies (config files) were then oversampled at a rate of 10X, providing a total of 10080 
design specifications for Deep Structure Search, with either ten or twenty repeats of each 
design specification. We evaluated this approach against alternative filtering strategies of 
using the top 4%, 7%, or 10% of configs by the maximum + median strategy described above 
and found that the current method performed favorably for maximizing Antibody-Aligned 
ipTM Score. 
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Deep Structure Search 
Following Wide Structure Search, we executed a second structure design step, Deep 
Structure Search, to exploit the favorable configurations identified through Wide Structure 
Search and comprehensively sample the accessible structure space within each design 
specification.  
 
During Deep Structure Search, AbsciDiff, IgDesign2, and AbsciBind were run with 
parameters identical to those used during Wide Structure Search, resulting in 10080 · 	𝑀 =241920 generated structure samples and 30240 selected/scored structure samples with 
one sequence selected per structure. 
 
All 30240 structure-sequence pairs produced during Deep Structure Search were pooled 
with the 10080 structure-sequence pairs from Wide Structure Search for a total of 40320 
structures. Designs were then filtered to remove those for which the L-RMSD 
(Supplementary Table 6) between the AbsciBind protocol-predicted structure and the 
AbsciDiff-designed structure exceeded 5 Å. Out of the top 10000 remaining structures by 
Antibody-Aligned ipTM Score, 500 structures were advanced to Sequence Search (see 
below). The first 25% of structures were selected by highest Antibody-Aligned ipTM Score. 
The remaining 75% of structures were selected by minimum Intersection Score 
(Supplementary Table 6). The rationale behind leveraging multiple selection strategies was 
to ensure inclusion of designs that prioritize both recall, by selecting structures scored highly 
by Antibody-Aligned ipTM Score (first 25% selection), and precision, by selecting structures 
scored highly by both Antibody-Aligned ipTM Score and AbsciBind ipTM score (last 75% 
selection). To ensure structural diversity among this selection, structures were clustered via 
agglomerative clustering using the antigen-aligned-conserved-residue-RMSD metric 
(Supplementary Table 6) with a distance threshold of 10 Å. The percent of structures 
selected from a single structural cluster was limited to 30% during implementation of the 
25%/75% selection strategy. 
 
Sequence Search 
Sequence Search searches for top-scoring sequences for the top backbone structures 
identified through Wide Structure Search and Deep Structure Search. 320 sequences were 
sampled from IgDesign2 for each of the 500 selected structures. These sequences were 
filtered to remove sequences with “critical” liabilities (Supplementary Table 7) and 
deduplicated. The top twenty sequences per structure, as ranked by IgDesign2 pseudo-
perplexity (Supplementary Table 6), were scored with the AbsciBind protocol (using their 
reference structure as a template) and considered for final selection. 
 
For final selection, sequences from Wide and Deep Structure Search were pooled with 
designs from Sequence Search. Any sequence with an L-RMSD between the design 
structure vs. AbsciBind-folded structure of greater than 5 Å was removed. For each 
structure, the top sequence was selected by Intersection Score. The top 95 
structure/sequence pairs were then selected by AbsciBind Score (Supplementary Table 6), 
restricting the number of “Other” sequence liabilities permissible (Supplementary Table 7). 
Additional criteria were imposed to promote design diversity: the permitted number of 
replicates of each unique HCDR3 sequence was restricted to three; the number of 
replicates of each unique (HCDR3 sequence, cdr_lengths) pair was capped at one (where 
cdr_lengths is an ordered list of CDR lengths); and the permitted proportion of sequences 
from a single structural cluster was capped at 30%. 
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7.6.2 CDR length distributions used to guide antibody design 

 

HCDR3 LCDR1 LCDR3 

Length Rate Length Rate Length Rate 

8 0.02 6 0.55 8 0.10 

9 0.04 7 0.15 9 0.60 

10 0.06 8 0.10 10 0.15 

11 0.08 9 0.10 11 0.10 

12 0.10 10 0.05 12 0.05 

13 0.10 11 0.05 … … 

14 0.10 … … … … 

15 0.10 … … … … 

16 0.08 … … … … 

17 0.06 … … … … 

18 0.06 … … … … 

19 0.04 … … … … 

20 0.04 … … … … 

21 0.04 … … … … 

22 0.02 … … … … 

23 0.02 … … … … 

24 0.02 … … … … 

25 0.01 … … … … 

26 0.01 … … … … 

 

Supplementary Table 5. Normalized distributions of HCDR3, LCDR1, and LCDR3 lengths from 
AbData. Lengths for individual CDRs were sampled independently from these distributions. 
Length = CDR length; Rate = normalized rate of occurrence in AbData. 
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7.6.3 Metrics used to Score AbsciGen Designs 

 

Metric Description Search Stage(s) 

Antibody-Aligned 
ipTM Score 

A custom asymmetric ipTM score that merges all 
antibody chains and all antigen chains so that only 

antibody-antigen interactions are considered. 

Wide Structure Search, 
Deep Structure Search, 

Sequence Search 

AbsciBind ipTM 
Score 

Interface-predicted template modeling (ipTM) 
score from the AbsciBind protocol. 

Deep Structure Search, 
Sequence Search 

AbsciBind Score Average of Antibody-Aligned ipTM Score and 
AbscBind ipTM Score. 

Sequence Search 

Intersection 
Score 

A design’s minimum rank when comparing its 
Antibody-Aligned ipTM Score and AbsciBind ipTM 
scores, defined as: min(rank(complexes, 

“AbsciBind ipTM Score”), rank(complexes, 
“Antibody-Aligned ipTM Score”)). 

Deep Structure Search, 
Sequence Search 

Ligand RMSD  
(L-RMSD) 

The substrate-aligned root mean square deviation 

of atomic positions for the ligand between two 
complexes  

Deep Structure Search, 

Sequence Search 

Antigen-aligned 
conserved 
residue RMSD 

The antigen-aligned root mean square deviation of 

residue positions which are structurally conserved 
across antibody frameworks. These positions are 
Chothia [64] scheme IDs 36-39 and 89-92 on the 

heavy chain and scheme IDs 35-38 and 85-88 on 
the light chain. Complexes are aligned on the 
antigen via the Kabsch algorithm [60]. RMSD is 

then calculated across these conserved positions. 

Deep Structure Search, 

Sequence Search 

IgDesign2 
pseudo-
perplexity 

The perplexity of the sequence under the 
IgDesign2 logits. 

Sequence Search 

 

Supplementary Table 6. List of metrics used to evaluate Origin-1 generated structures and 
sequences. 
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7.6.4 Sequence liabilities considered in antibody design 

 

Sequence Liability Category 

N-Glycosylation - The motif NXS or NXT with X any residue other than proline Critical 

3-W - Five consecutive tryptophan residues in a single CDR. Critical 

4-G - Four consecutive glycine residues in a single CDR. Critical 

5-Y - Five consecutive tyrosine residues in a single CDR. Critical 

5-S - Five consecutive serine residues in a single CDR. Critical 

3-G - Three consecutive glycine residues in a single CDR. Other (4 max) 

3-S - Three consecutive serine residues in a single CDR. Other (13 max) 

4-S - Four consecutive serine residues in a single CDR. Other (3 max) 

 

Supplementary Table 7. List of sequence liabilities considered while designing Origin-1 
libraries for in vitro experimentation.  

 

7.7 Lead Optimization 
 
Variant Scoring 
We computed the masked marginal (MM) likelihood of a mutant sequence as a fitness score 
for the protein language models, as this approach has been shown in benchmarking tasks 
to perform well with a low computational requirement, especially for single-mutants [56]. 
We calculated the difference between AbsciBind Scores associated with the parent relative 
to the mutant and used this difference as the fitness score from the AbsciBind protocol. 
 
Variant Selection 
Mutable positions on both heavy and light chain included the CDRs, structure-inferred 
paratope residues (defined as those within 5 Å of the antigen using the AbsciBind predicted 
structure). Additional mutable positions are included in FWR2 and FWR3, excluding selected 
conserved motifs. All possible single-mutants were generated for the defined mutable 
positions and scored with the ESM ensemble [55-57], AbLang2 [58], and the AbsciBind 
protocol as fitness models, along with the Therapeutic Antibody Profiler (TAP) [65] and 
BioPhi [47] to assess in silico developability and humanness. Mutant sequences that 
introduce chemical liabilities (e.g. N-glycosylation motifs) were also excluded. 
 
Library Creation 
We selected 94 single-mutant variants per de novo binder. To generate these libraries, we 
first included an alanine scan of all structurally inferred paratope residues, all human 
germline reversions, and any positions with improved fitness by both AbsciBind and a 
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sequence model (either of ESM-ensemble, or AbLang2). For the ESM ensemble, improved 
fitness was defined as a median score of > 0.0 across all component models. We 
subsequently selected the highest-scoring (by AbsciBind Score) structural mutants, 
allowing up to four mutants per CDR/paratope position and two mutants per mutable 
framework position. The remaining library budget was filled with sequence mutants (by ESM 
ensemble only) allowing no more than two mutants per CDR/paratope position and one 
mutant per framework position. Fitness thresholds and positional budgets were adjusted 
per design as necessary to fit the library budget, maintain balance across categories, and 
ensure positional diversity. Supplementary Table 8 shows the categorical breakdown of 
variants selected by method in each library. We measure the binding affinity of library 
variants by SPR using the protocol described in Supplement §7.8.2. 
 

Selection Method COL6A3 CHI3L2 AZGP1 IL36RA 

Alanine scan 20 25 23 31 

Germline reversion 6 8 19 14 

Structural alone 27 41 17 28 

Sequence alone 41 13 33 20 

Structural + Sequence 0 7 2 1 

N Total Mutants 94 94 94 94 

Mutation Positions (HC:LC)  70:24 48:46 49:45 40:54 

 

Supplementary Table 8. Count of single-mutants ordered by selection method for the 
binders identified for further lead optimization. Each 96 well plate includes the parent 
sequence in the order and a negative binding control mAb is added during processing for 
SPR. HC = Heavy Chain; LC = Light Chain. 

 

7.8 In vitro Methodology 
 

7.8.1 Antibody Production 
 
Up to 95 monoclonal antibodies per target were produced by GenScript (Piscataway, NJ, 
USA) using a Chinese hamster ovary (CHO) cell-based expression system at a 1mL culture 
volume scale. Antibodies were purified from culture supernatants utilizing protein A 
magnetic beads and supplied in a buffer containing sodium acetate, 0.2M L-arginine, at pH 
5.5. Final antibody concentrations ranged from 2.6mg/mL to 0.05 mg/mL. Endotoxin levels 
were confirmed to be below 0.020 EU/mg for all samples. For hit validation studies, selected 
antibody sequences were expressed as Fabs by GenScript using a CHO-based system at a 
30mL culture volume scale and as mAbs by WuXi Biologics (Wuxi, Jiangsu, China) using a 
CHO-based system at a 20mL culture volume scale. For mAbs produced by WuXi Biologics, 
purification was performed from culture supernatants via protein A affinity chromatography, 
and antibodies were formulated in sodium acetate buffer containing 20 mM histidine, 150 
mM NaCl, at pH 5.5. In certain cases, formulations were further supplemented with 150 mM 
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arginine and 60 mM succinic acid. Antibody concentrations ranged from 10 mg/mL to 0.15 
mg/mL, and endotoxin levels were maintained below 0.020 EU/mg for all samples. 
 

7.8.2 Surface Plasmon Resonance (SPR)  
 
Binding by SPR was assessed using LSAXT instruments (Carterra, Salt Lake City, UT). 
 
Primary Hit Screening 
Binding was assessed against intended targets and off-target proteins to assess binding 
specificity. Antigens were buffer-exchanged using Zeba Desalting Spin Columns 
(ThermoFisher, Cat. No. 89890) and transferred into 96 deep-well plates at a starting 
concentration of 2µM, then serially diluted 4-fold for 6 steps in 1x HBSTE-BSA assay buffer 
(10 mM HEPES pH 7.4, 150mM NaCl, 3mM EDTA, 0.05% Tween-20 + 0.5g/L BSA). Target-
designed mAbs, off-target mAbs, and four framework controls were immobilized onto a 
SAHC30M chip (Carterra, Cat. No. 4294) coated with 20µg/mL CaptureSelect Biotinylated 
Anti-IgG Human Fc antibody (ThermoFisher, 7103262100). Samples were immobilized for 
ten minutes in 1x HBSTE assay buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% 
Tween-20) on the chip, followed by a five-minute injection of antigen, and ten-minute 
injection of 1x HBSTE-BSA assay buffer to measure rate of association (kon) and dissociation 
(koff) between antigen and antibody. Each antibody-antigen pair was run in duplicate, with 
antibodies re-immobilized on the sensor chip surface between prints with a 2 x 120 second 
regeneration injection of 10mM Glycine HCl pH 2.0 (Carterra, Cat. No. 3640). Kinetics analysis 
software (v2.0, Carterra) was used to analyze datasets. 
 
Sensorgrams with signal output of Response Units (RU) < 5 were automatically excluded by 
Kinetics software, and further exclusions were made manually for sensorgrams with signal 
< 10 RU. For any sensorgram to be further evaluated, signal for the 2 µM concentration must 
have been > 10 RU with signal (> 5 RU) in at least the second-highest concentration (500 nM). 
Sensorgrams were then visually inspected for curvature, convergence and dissociation 
according to evaluation criteria as part of standard analysis. Data from on-target and off-
target SPR runs were cross-analyzed to determine antibody-antigen binding specificity as 
well as non-specific mAb interactions, which could be determined by both sensorgram 
quality and frequency of overall non-specific binding events. Sensorgrams depicting high 
degrees of linearity in both the association and dissociation phases, as well as characteristic 
slow kon and koff were determined to be non-specific. By contrast, true hit sensorgrams 
displayed curvature in both the association and dissociation phases, with faster kon and koff. 
To be considered a true hit, a design must have also bound specifically to the target it was 
designed for and show a lack of binding to off-targets. 
 
Lead Optimization Screening 
For lead optimization libraries, antibody and antigen concentrations were adjusted to bring 
signal in range for affinity measurement. Antibodies designed against COL6A3 were 
immobilized at 0.5 µg/mL and assessed against a dilution series of COL6A3 starting at 2 µM 
and serially diluted 3-fold in 1x HBSTE-BSA assay buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 
3 mM EDTA, 0.05% Tween-20 + 0.5 g/L BSA) for six dilution points. Antibodies designed 
against AZGP1, CHI3L2, and IL36RA were immobilized at 1 µg/mL and assessed against a 
dilution series of their respective antigens starting at 2 µM and serially diluted 2-fold in 1x 
HBSTE-BSA assay buffer for six dilution points. During kinetic analysis of the COL6A3 
antibody designs, affinity was calculated after cropping sensorgrams to 375 seconds due to 
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biphasic binding responses. For lead optimization libraries, data were fit to a 1:1 Langmuir 
model to calculate affinity.  
 
We report binding affinities for top designs (referred to as parent designs) and optimized 
variants in Supplementary Figure 17. The full set of binding affinities can be found here. 
 

 
Supplementary Figure 17. Per-target SPR sensorgrams including measured binding affinities 
for Origin-1 parent and optimized variant designs. (A) Left: Parent design against COL6A3 
binds to COL6A3. Right: Binding affinity is measured from cropped SPR sensorgram 
reflecting binding of COL6A3 Parent Design against COL6A3. * indicates that binding affinity 
is computed from cropped sensorgram (B) Parent design against AZGP1 binds to AZGP1. 
(C) Left: Parent design against CHI3L2 binds with micromolar affinity. One round of AI-based 
affinity maturation leveraging AbsciBind improves binding affinity by approximately 4X 
(Middle) and 2X (Right). (D) Left: Parent design against IL36RA binds to IL36RA with 

https://github.com/AbSciBio/origin-1/tree/main
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micromolar affinity. One round of AI-based affinity maturation leveraging AbsciBind 
improves binding affinity by approximately 68X (Middle) and 26X (Right). 
 

7.8.3 Biolayer Interferometry (BLI) 
 
A BLI kinetics assay was used to confirm binding results that were observed upstream by 
SPR. The Gator® label-free bioanalysis system, which includes the Gator® Prime instrument, 
biosensor probes, and a computer with integrated software, was used to measure the 
binding kinetics between antibodies and antigens. All steps in the instrument were 
performed at 25 °C and an orbital shaking speed of 1,000 RPM. All reagents were formulated 
in 1x HBSTE-BSA (1x 10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% Tween 20, 0.5 
mg/mL BSA) assay buffer. All sensors were rehydrated in buffer for a minimum of ten 
minutes before beginning the assay. Prior to each kinetic measurement, the Anti-Human 
Fab (Gator; Cat. No. 160013) biosensor probes were dipped into the assay buffer for 60 
seconds to establish a baseline. For kinetics measurement, 5 µg/mL of each antibody was 
immobilized onto the biosensor probes for 120 seconds. Following antibody immobilization, 
the biosensor probes were dipped into the assay buffer for 60 seconds to assess baseline 
drift and evaluate the antibody loading level. Subsequently, the probes were exposed to 
serially diluted antigen solutions (ranging from 2000 nM to 31.25 nM in 2-fold dilutions) for five 
minutes to monitor real-time association kinetics. This was followed by a ten-minute 
dissociation phase, during which the probes were transferred to antigen-free assay buffer 
(HBSTE-BSA) to assess the rate of antibody-antigen complex dissociation from the 
biosensor surface. Kinetic data were analyzed using the GatorOne analysis software (v2.17.7, 
Gator Bio). Quality of fit was assessed by using the value of 𝑅- > 0.95 with manual inspection 
of sensorgram curvature. Kinetics sensorgrams were plotted in GraphPad Prism 10.0. 
 

7.8.4 Antibody-Antigen Complexation 
 
Antibody binders were reformatted as Fabs and combined with respective antigen at a 
1.3:1 antigen:Fab molar ratio and purified by Size-Exclusion Chromatography using a 
Superdex200 Increase 10/300 column (Cytiva). Chromatograms were normalized and 
plotted against Fab/antigen alone to compare differences in retention volume.  
 
We show gels related to complexation chromatograms in Supplementary Figure 18. 
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Supplementary Figure 18. SDS-PAGE gels for validated antigen-Fab combinations. (A) SDS-
PAGE gel with lanes corresponding to AZGP1 alone, Fab alone, and selected AZGP1-Fab 
complex fractions from chromatogram seen in Figure 10. (B) SDS-PAGE gel with lanes 
corresponding to COL6A3 alone, Fab alone, and selected COL6A3-Fab complex fractions 
from chromatogram seen in Figure 9. (C) SDS-PAGE gel with lanes corresponding to IL36RA 
alone, Fab alone, and selected IL36RA-Fab complex fractions from chromatogram seen in 
Figure 12. (D) SDS-PAGE gel with lanes corresponding to CHI3L2 alone, Fab alone, and 
selected CHI3L2-Fab complex fractions from chromatogram seen in Figure 11. 
 

7.8.5 Developability Assessments 
 
Antibody Quality Assessment 
Antibody quality assessments were performed by SEC, non-reduced CGE (NR-CGE) or 
Microchip-CGE (MCGE), and intact mass spectrometry. Concentration of mAbs was 
determined by A280 using the SoloVPE instrument (CTechTM) and each antibody’s 
calculated extinction coefficient [66]. Aggregation determination by SEC was performed 
using HPLC 1260 Infinity II (Agilent) with mobile phase 1X PBS, pH 7.4 and separation was done 
on a 30 cm TSKgel UP-SW2000 (Tosoh) column. Fragmentation evaluation by NR-CGE was 
performed using CESI 8000 Plus (Sciex) with a high-speed setup method for separation. 
Alternatively, for high-throughput analysis, fragmentation was performed by MCGE using a 
LabChip GX Touch HT (Revity) and the protein express reagent kit (Revity). Confirmation of 
identity was done by intact mass spectrometry using a reversed phase HPLC 1290 Infinity II 
(Agilent) connected to a TripleTOF 6600+ MS System (Sciex). Intact mass data analysis was 
performed using PMI-Byos software v4.5-53 (Protein Metrics). All assays contained a system 
suitability check in each run or plate as determined by the performance of trastuzumab 
(SEC, NR-CGE, MCGE), BSAA standard (concentration of mAbs) or NIST mAb (intact mass). 
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Antibody Developability Assays 
Particle size and thermal stability of the antibodies were performed by dynamic light 
scattering (DLS) and nano differential scanning fluorimetry (nanoDSF) using Prometheus 
Panta instrument (NanoTemper). DLS measurements were acquired at 25°C under high 
sensitivity mode. Thermal unfolding profiles were subsequently recorded from 25°C to 90°C 
with a temperature ramp of 0.5°C per minute. Data was processed and analyzed using 
Prometheus Panta software version 1.1. 

 
Antibody self-association, polyreactivity, and hydrophobicity were analyzed using affinity 
capture self-interaction nanoparticle spectroscopy (AC-SINS), ELISA-based assays, and 
hydrophobic interaction chromatography (HIC), respectively. AC-SINS was performed 
according to the method reported before [67]. Polyreactivity was assessed as anti-DNA and 
anti-insulin ELISAs according to procedure described previously [68]. Data reporting for 
polyreactivity was performed in a novel manner to account for plate-to-plate variability and 
the four dilution levels used in the study. Molecules were run at 0.08, 0.4, 2.0 and 10.0 µg/mL 
against immobilized DNA or Insulin, with the resulting absorbance values divided by the value 
of the blank (buffer) for a score.  This score was then normalized for each dilution level using 
the maximum value on the plate (rescored 11) and blank value on the plate (rescored 1) to 
reduce plate to plate variability affecting scoring. These normalized scores were then added 
for all four dilution levels for a Range Normalized Summation (RNS) reported as the total 
polyreactivity result. HIC analyses were performed according to a procedure detailed in Jain 
et al. [69].  HIC reporting was done as relative retention time compared to trastuzumab 
(Sample retention time/trastuzumab retention time) All the assays were evaluated for 
system suitability checks in each run or plate as determined by the performance of a 
negative control, trastuzumab for all assays, and at least one positive control such as 
Infliximab for AC-SINS, Bococizumab and Briakinumab for polyreactivity, or BSA and Insulin 
for HIC. For DLS and nanoDSF, standard particles solution and lysozyme standard were used 
for system suitability checks in each run, respectively. 
 

7.8.6 Cryogenic Electron Microscopy (Cryo-EM) 
 
Data Acquisition 
For the AZGP1-Design complex, fractions purified as described above were combined 
and concentrated down to 1 mg/mL before snap freezing. For the COL6A3-Design 
complex, fractions purified as described above were combined at a 1:1:1 molar ratio 
with modified variants of an anti-Kappa VHH (Q5V, Q113K, Q116P; referred to 
as Nanodaptor) and NabFab (S123E, Q199R; referred to as Kappabulk). Relevant fractions 
were pooled and concentrated down to 4.5mg/mL before snap freezing. For cryo-EM grid 
preparation, 2.5µL of purified COL6A3-Design-Nanodaptor-Kappabulk and AZGP1-Design 
complexes at concentration of 0.5mg/ml and 0.4mg/ml, respectively were applied to glow-
discharged Cu 300 mesh holey carbon grids (Quantifoil R1.2/1.3). The grids were blotted and 
plunge-frozen in liquid ethane using a Vitrobot Mark IV (ThermoFisher Scientific). 
 
For the AZGP1-Design complex dataset, 9687 movies were collected on a 
Titan Krios transmission electron microscope operated at 300kV and equipped with a 
Falcon4i direct electron detection detector. Data were acquired at a nominal magnification 
of 130,000, corresponding to a calibrated pixel size of 0.932 Å. Each movie consisted of 40 
frames resulting in a total accumulated electron dose of approximately 49 e-/Å2. 
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For the COL6A3-Design complex dataset, 9502 movies were collected on a 
Titan Krios transmission electron microscope operated at 300 kV and equipped with a K3 
direct electron detection detector. Data were acquired at a nominal magnification of 
105,000, corresponding to a calibrated pixel size of 0.824 Å. Each movie consisted of 40 
frames resulting in a total accumulated electron dose of approximately 48 e-/Å2. 
 
Image Processing and 3D Reconstruction 
Movie stacks were motion-corrected and dose-fractionated at the micrograph level using 
MotionCor2 [70] to correct for beam-induced motion and stage drift. Non–dose-weighted 
micrographs were used for contrast transfer function (CTF) estimation with CTFFIND 
[71]. Subsequent data processing was performed using RELION 4.0 [72].  
 
For the AZGP1-Design complex, 5.8 million particles were auto-picked and subject to 
multiple rounds of 2D classification. Following 2D classification, approximately 2.0 million 
particles were selected for ab initio reconstruction. From five resulting 3D classes, one 
class comprising 435,000 particles was subjected to 3D refinement, CTF 
refinement, Bayesian polishing, and post processing. The final reconstruction reached a 
global resolution of 3.1 Å, as determined by the gold-standard Fourier shell correlation (FSC) 
0.143 criterion (Supplementary Figure 19). 
 
For the COL6A3-Design-Nanodaptor-Kappabulk complex, approximately 4.1 million 
particles were auto-picked and subject to several rounds of 2D classification. Following 2D 
classification, approximately 1.0 million particles were used for ab initio reconstruction. From 
five 3D classes, one class comprising 494,000 particles was selected for 3D refinement, CTF 
refinement, Bayesian polishing, and post-processing, yielding a reconstruction with a global 
resolution of 3.0 Å (FSC 0.143 criterion). To further improve map quality at the binding 
interface, a focused local refinement on the COL6A3–Fab region was performed, resulting 
in a local resolution of 2.9 Å (Supplementary Figure 20).  
 
Model Building and Refinement 
The starting model for COL6A3 was derived from PDB:1KTH. The initial atomic model of the 
COL6A3 design was generated by automated model building  directly from the Fab 
sequence using CryFold / CryoAtom [73], followed by manual building of missing/incorrect 
regions in Coot. The model was completed by iterative rounds of manual model adjustment 
in Coot and automated real-space refinement using PHENIX [74]. 
 
The starting model for AZGP1 was derived from PDB:1T7V. The initial atomic model of the 
AZGP1 design was generated by autobuilding directly from the Fab sequence using CryFold, 
followed by manual building of missing/incorrect regions in Coot. The model was 
completed by iterative rounds of manual model adjustment in Coot and automated real-
space refinement using PHENIX. 
 
Structure visualizations in this work were made possible by PyMOL [75] and Mol* [76]. 
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Supplementary Figure 19. CryoEM processing workflow of AZGP1-Design structure. (A, B) 
Representative 2D class averages and 3D classes. (C-F) Global 3D reconstruction, angular 
distribution of particle orientations, local resolution estimations and sharpened map. (G) 
Gold-standard FSC plots for the AZGP1-Design complex. 
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Supplementary Figure 20. CryoEM processing workflow of COL6A3-Design-Anti Kappa VHH-
NabFab structure. (A, B) Representative 2D class averages and 3D classes. (C-E) 3D 
reconstruction, local resolution estimations and gold-standard Fourier shell correlation 
(FSC) plots for the COL6A3 complex global map. (F-H) Locally refined 3D reconstruction 
map, local resolution estimations and gold-standard FSC plots for the COL6A3-Design 
region. 
 

7.8.7 Functional Assessment 
 
Testing Functional Activity of Identified IL36RA Binders 
The IL36 cytokine axis is a tightly regulated inflammatory signaling pathway in which the 
agonist ligands IL36α, IL36β, and IL36γ trigger IL36 receptor activation and downstream 
MAPK and NF-κB signaling [49]. In physiological settings, this response is restrained by 
IL36RA, an endogenous receptor antagonist that competes with agonist ligands and 
suppresses signaling output. 
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To functionally characterize antibodies directed against IL36RA, we used a reporter-based 
system in which IL36 receptor signaling is converted into a quantitative, secreted readout. 
In HEKBlueIL36 cells, activation of AP1 and NF-κB drives expression of secreted embryonic 
alkaline phosphatase (SEAP), enabling pathway activity to be monitored directly in cell 
culture supernatants using a simple colorimetric assay. In the present study, IL36γ is used to 
stimulate the pathway, IL36RA is added to impose pharmacologic inhibition, and test 
antibodies are evaluated for their ability to neutralize IL36RA activity and thereby restore 
IL36γ-dependent signaling, as measured by SEAP production. 
 
HEK-Blue-IL36 cells were seeded into 96-well tissue-culture plates at a density of 25,000 
cells/well in the presence of IL36γ (2 pM), IL36RA (50 nM), and increasing concentrations of 
test antibody. Test antibodies were prepared as threefold serial dilutions spanning 1 µM to 
1 nM. 
 
Cells were incubated for 24 h at 37°C, 5% CO₂, under humidified conditions. Following 
incubation, 20 µL of conditioned medium was transferred and mixed with 180 µL of 
QuantiBlue (InvivoGen) working solution in a clear 96-well plate and incubated at room 
temperature for 60 min. Absorbance was measured at 620 nm using a SpectraMax i3x plate 
reader. Raw data were processed in Excel, and dose–response curves were fitted by 
nonlinear regression using Prism 10 (GraphPad). 


