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O Abstract

Generative artificial intelligence has advanced antibody discovery, yet de novo design of
therapeutic antibodies against targets with “zero-prior” epitopes remains a fundamental
challenge. We define “zero-prior” epitopes as target sites lacking structural data from any
reported antibody-antigen or protein-protein complex involving the target. Here we
present Origin-1, a generative Al platform that overcomes this by integrating
epitope-conditioned all-atom structure generation, paired complementarity determining
region sequence design, and a specialized co-folding-based scoring protocol to select
antibody designs predicted to be high-confidence, specific binders with favorable
developability. We evaluated Origin-10on a panel of ten targets selected to have no available
protein-protein complex structures and minimal homology (s60% sequence identity) to
proteins with known complexes, creating stringent design conditions. In fewer than one
hundred design attempts per target, we identified developable, specific antibodies,
validated across multiple biophysical and developability assays, for four targets: COL6A3,
AZGP1, CHI3L2, and IL36RA, with functional inhibition demonstrated for IL36RA. Cryogenic
electron microscopy confirmed the atomic accuracy of our designs, revealing complexes
that closely matched the computational models with high structural fidelity (3.0-3.1 A
resolution; 0.73-0.83 DockQ). Furthermore, we employed Al-guided affinity maturation to
optimize a de novo antibody against IL36RA into a functional antagonist with 104 nM potency.
These results demonstrate a framework for targeting epitopes without structural
precedent, expanding the programmable therapeutic antibody landscape.

1 Introduction

Antibodies serve as the immune system’s primary defense mechanism, recognizing and
neutralizing pathogens with exceptional specificity. Their capacity to bind diverse antigens
with high affinity has established antibodies as essential therapeutic agents[1, 2, 3]. However,
despite their success, traditional antibody discovery methods remain resource-intensive
and provide limited control over which epitopes are targeted. This limitation motivates the
development of computational approaches for efficient de novo antibody design with
precise epitope specification.

Antibody-antigen recognition is primarily mediated by six complementarity-determining
regions (CDRs), whose high sequence and conformational variability make CDR design the
core computational challenge [4, 5]. Therapeutic antibody design typically begins with
known framework scaffolds that have favorable developability, stability, and expression
properties, and then focuses on designing CDRs that bind a target epitope. A common
computational paradigm addresses this in two stages: first generating atomistic antibody-
antigen complex structures conditioned on the antigen and epitope, then designing CDR
seguences predicted to fold into these structures.

Recent advancesin machine learning have enabled progress in protein structure prediction
[6, 7] and de novo design [8, 9], yet existing approaches exhibit significant limitations for
epitope-targeted antibody design. Structure generation methods face several challenges:
backbone-only diffusion approaches such as RFdiffusion [9] and RFantibody [10] lack



atomic resolution and treat antigens rigidly; general-purpose all-atom design models
including P(all-atom) [11] and La-Proteina [12] are not fine-tuned for antibody-specific
conditioning or epitope-targeted generation; and hallucination-based approaches such as
BoltzDesign [13], BindCraft [14], Germinal [15], and mBER [16] leverage gradient signals from
trained structure prediction models for optimization but incur substantial computational
expense and often necessitate subsequent sequence redesign or complex loss function
composition to avoid degenerate outputs.

Seguence design models also remain limited in their applications to epitope-specific
antibody design. Inverse folding models such as ProteinMPNN [17] and antibody-specific
variants such as AbMPNN [18] achieve strong performance but treat heavy and light chains
independently. Although hybrid approaches that combine structure-based models with
protein language models have shown promise [19-22] and paired antibody language
models [21] enable heavy-light chain co-modeling, these methods do not deeply integrate
paired language representations with geometric structure encoding in a unified muilti-
modal framework for therapeutic CDR design.

Other antibody modeling approaches that report successful epitope-specific design
provide limited detail on their technical methodology; thus, effectively evaluating them for
their advances or limitations remains difficult [23-27]. The recently open-sourced BoltzGen
[28], developed independently and concurrently with this work, addresses several key
limitations—providing all-atom resolution and binding site conditioning through a flexible
design specification language—though experimental validation for antibodies is limited to
nanobodies, leaving full-length antibody design with experimental validation unaddressed.
These gaps motivate approaches that combine epitope-conditioned all-atom structure
generation with paired-chain sequence design in addition to transparency in development
methodology.

When applying protein structure and sequence design tools to problems in drug discovery,
it is important to not only produce accurate designs, but also stringently filter outputs such
that a minimal, high-confidence set can be advanced to the laboratory for in vitro
experimentation [29]. This “design-and-score” paradigm uses generative models to design
putative binders to targets of interest and subsequently leverages scoring metrics to filter
and rank designs for downstream experimentation. Prior work has shown that the
confidence metrics output from folding models such as AlphaFold-Multimer [30] can
accurately evaluate the likelihood that a sequence will adopt a particular structural
geometry [30-32]. However, other studies have shown that these folding models perform
poorly for antibody-antigen complex structures specifically [33, 34], with models failing to
recover correct poses when provided with antibody-antigen complex sequences [2].
Therefore, beyond addressing limitations in protein structure and sequence design to
achieve accurate epitope-targeted CDR design, further innovation is required in folding
model methodology to apply the associated confidence metrics to antibody design scoring.

To these ends, we introduce Origin-1, a design-and-score Al platform that addresses the
aforementioned limitations to achieve epitope-specific de novo antibody design via a two-
stage framework. The first stage, AbsciGen, enables site-specific, conditional CDR design.
The second stage, AbsciBind, addresses the limitations of traditional folding-based
confidence metrics to accurately evaluate antibody-antigen complex designs and select
the best candidates for downstream experimentation. We use this platform to generate



developable and functional full-length monoclonal antibodies (mAbs) against four human
protein targets (COL6A3, AZGP1, CHI3L2, and IL36RA) in fewer than one hundred attempts
per target. Of note, these mAbs were designed against “zero-prior” epitopes - that is,
epitopes that were selected as putative functional binding sites without guidance from
solved complex structures. These results show that Al-based approaches can succeed not
only in designing antibody binders against structurally resolved protein-protein interfaces
[23-27], but also user-specified novel interfaces, which may unlock access to disease
targets that have historically been difficult to drug or otherwise remain understudied.

2 Methods

2.1 Overview of Origin-1

Origin-1is a generative Al platform that designs and scores putative antibody binders to
target proteins of interest. To achieve this outcome, Origin-1 performs two key tasks: 1)
generates the structures and corresponding amino acid sequences of antibodies that are
likely binders to proteins of interest, and 2) scores the resulting candidates to select high-
confidence designs to prioritize for in vitro experimentation. We refer to the protocols used
to perform these tasks as AbsciGen and AbsciBind, respectively.

In the sections that follow, we describe the methodology underlying these strategies and
the experimental approaches we used to assess their joint performance in Figure 1.
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Figure 1. Overview of the Origin-1 platform and experimental validation cascade. (Left)
Overview of Origin-1 Platform. AbsciGen generates antibody designs through two stages:
AbsciDiff, which produces all-atom antibody-antigen complex structures via diffusion-
based generation, and IgDesign2, which designs CDR sequences. AbsciGen designs are
evaluated by AbsciBind, which identifies high-confidence binders to reduce experimental
screening demands. (Right) Overview of experimental cascade. Antibody designs are
expressed as full-length monoclonal antibodies and are evaluated through stringent
validation experiments to confirm specificity, selectivity, and epitope-specific binding. Initial
hits are identified by SPR and confirmed by BLI and aSEC complexation experiments. Hits
are assessed for quality and developability, including purity, aggregation, thermal stability,
polyreactivity, and hydrophobicity. Antibody-antigen complexes are formed and analyzed
by cryo-EM to confirm agreement between in silico designs and experimentally determined
structures. Some hits are optimized through synthesis of model-ranked mutational variants
(e.g., Origin-1), with affinity confirmed by SPR and BLI. Top parent and variant designs are



evaluated in HEKBlue assays to confirmn functional activity. SPR = Surface Plasmon
Resonance; BLI = Biolayer Interferometry; aSEC = Analytical Size Exclusion Chromatography;
SEC-HPLC = Size Exclusion Chromatography - High-Performance Liquid Chromatography;
NR-CGE = Non-Reduced Microchip Capillary Gel Electrophoresis; MCGE = Microchip
Capillary Gel Electrophoresis; nanoDSF = Nanoscale Differential Scanning Fluorimetry; DLS =
Dynamic Light Scattering; HIC-HPLC = Hydrophobic Interaction Chromatography - High-
Performance Liquid Chromatography; PR ELISA = Polyreactivity Enzyme-Linked
Immunosorbent  Assay; AC-SINS = Affinity-Capture Self-Interaction Nanoparticle
Spectroscopy; Cryo-EM = Cryogenic Electron Microscopy. Created using Biorender.com.

2.2 Origin-1Datasets and Curation

To train AbsciGen we rely on AbData, a protein structure curation workflow and database
that we developed specifically for training antibody design models. In brief, the AbData
pipeline comprises three stages: 1) Protein Data Bank (PDB) [35] sequence and structure
information extraction, in addition to structure cleaning and resolution of missing residues
and atoms; 2) antibody-antigen complex or protein-protein dimeric interface metadata
extraction; and 3) structure dataset creation, dataset splitting, data deduplication, and final
annotation of structure interfaces, complementarity determining regions (CDRs), and
frameworks. This pipeline captured data from all bioassemblies and asymmetric units in the
PDB, resulting in antibody structures from 10,045 distinct PDBs, including all structures in the
Structural Antibody Database (SAbDab) [36] as well as many rare categories of antibodies
that are incompletely captured in SAbDab [37, 38]. We also devised an inspection process
that automatically flagged over 1400 candidate entries with potential errors arising from
spurious bioassemblies, false symmetries, or artifactual chain duplication. When errors were
confirmed, individual complexes were corrected by removing erroneous chains or
reverting to the asymmmetric unit. Our protein-protein interaction dataset largely follows the
logic outlined in Townshend et al. 2019 [39], where interfaces are extracted for all contacting
chain-pairs across the PDB. Additional details on AbData’s methodology are reported in
Supplement §7.1.

2.3 Origin-1Models

Origin-1 generates antibody designs via AbsciGen, comprising AbsciDiff for structure
generation (§2.3.1, Supplement §7.2) and IgDesign?2 for sequence design (§2.3.2). It scores
designs using AbsciBind (§2.3.3).

2.3.1. Structure Design via AbsciDiff

AbsciDiff (Figure 2) is a diffusion-based all-atom generative model fine-tuned from Boltz-1
[40] for epitope-conditioned antibody design. Key modifications include antibody- and
docking-specific feature masking and conditioning strategies, an intermediate sequence
hypothesis module with recycling, integration of optimized CuEquivariance kernels [41],and
support for structural templates. The sampling procedure follows Boltz-1, preserving the
sample efficiency and stability of the parent model. In the following sections, we describe
the diffusion formulation, feature generation strategy, architectural changes, and training
protocol.
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Figure 2. Schematic illustrating the AbsciDiff model. Building on the architecture of Boltz-1,
AbsciDiff uses a pairformer-based trunk to provide conditioning information to a diffusion
module. Modifications include invariant feature conditioning via an AlphaFold3-like template
module [6], as well as a module to predict a sequence hypothesis. The sequence hypothesis
is used to update the model’s input features for a second forward pass through the model.
Dashed lines indicate a stopped gradient. Red indicates modifications to Boltz-1.

AbsciDiff Diffusion Formulation
Following Boltz-1, we model the noise added to the native structure of an antibody-antigen
complex X, € RV *3 through a forward diffusion process,
dX, = \2tdB,,
where dB, is (N x 3)-dimensional Brownian motion.

To generate new complexes, we reverse this diffusion process over T timesteps (Figure 3).
Starting from X; ~ M (0, 1), we iteratively denoise using a model Py parametrized by a neural
network and conditioned on antigen and framework structure templates X,, X;, sequences
S48, and epitope residues E,. We denote the full conditioning information as
C =Xo0 X5, S0, 55 Eq.
We train this model to approximate the expected coordinates of the entire original complex
structure under the defined diffusion process given the current timestep and all available
conditioning information:
Py(Xy, t; C) = Exgx, [Xo],
with the standard denoising loss
L(O) = w; - 1Py Xy, t;C) — Xoll?,
where w, is a weight proportional to the variance of the noising process at timestep t.
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Figure 3. Reverse diffusion trajectory for joint antibody-antigen structure generation.
Starting from a fully corrupted state X, (left), AbsciDiff performs iterative denoising
transitions p(X.|X,_1,t) (middle), progressively recovering global geometry and local
structure until producing a final denoised sample X, (center right). Subsequently predicted
confidence computed on the final structure is shown on the far right (color scaled by
residue plLDDT, where blue represents high confidence and red represents low
confidence).

AbsciDiff Featurization

Antigen, Framework, and Epitope Conditioning: AbsciDiff’s most significant departure from
Boltz-1 concerns feature masking and conditioning. For our intended use, we assume
antigen structures are known, and we aim to design or redesign only the CDR regions while
keeping therapeutic framework sequences and structures intact. We additionally condition
on an epitope defined during training as the set of antigen residues within 6 A of the
antibody, down-sampled via a geometric distribution (p = 0.3) for robustness. We mask
seguence and structure features for all CDR positions, as well as all inter-chain pair features.
Docking is thus guided only by the token-wise binary epitope vector, implemented
analogously to Boltz-1's pocket-conditioning feature.

Design Region Representation: Amino acid identities in the design region are initially set to
the unknown (UNK) amino acid token for both sequence input and reference conformer
lookup. During structure prediction, the model is trained to perform atom superposition, as
in P(all-atom) [11]. For this task, all amino acids in the design region are represented in
Atom14 notation, with excess “virtual” atoms placed at the location of their residue’s Ca
(Supplementary Figure 1). Amino acids outside the design region have no virtual atoms since
their identities are known a priori. Other than the sequence hypothesis head described
below, AbsciDiff performs no sequence decoding on designed amino acids.

Template Structures: AbsciDiff also adds support for structural template featurization in two
ways: endogenous templating (in which pairwise residue distance information is derived
from a user-provided structure) and exogenous templating (where the same information is
sourced from external template databases). In both cases, structural information is
encoded and embedded as in AlphaFold3. During development, we found that endogenous
templating was practical and effective at providing structural guidance without introducing
bias. Thus, the final training runs included only endogenous template information.

Multiple Sequence Alignments (MSAs): AbsciDiff supports MSA featurization as in Boltz-1,
though it remains disabled by default. We found that full MSA feature sets performed no




better than a one-hot encoding of the input sequence when conditioned on endogenous
templates.

AbsciDiff Trunk Module and Intermediate Sequence-Informed Design

An auxiliary prediction head in AbsciDiff produces a design region sequence hypothesis
from the final single (s) representation of the trunk. The predicted logits are decoded into
the most likely amino acid tokens and, along with corresponding atom-level reference
conformer features, are recycled through the trunk with gradient flow stopped. Sequence
prediction is trained using cross-entropy loss against the native sequence. We hypothesize
that intermediate sequence prediction and conformer recycling assists the design process
by focusing the search space of potential residue identities and local atomic conformations
prior to the diffusion model performing final design.

AbsciDiff Confidence Module and Design Pre-Ranking

Though the underlying confidence module architecture is the same as Boltz-1, AbsciDiff
introduces a new on-model ranking and filtering strategy. Like Boltz-1, the diffusion module
emits M samples per sampling pass, which are subsequently scored using the confidence
module to generate predicted Template Modeling scores (pTM), predicted Local Distance
Difference Test scores (pLDDT), predicted Docking Error (pDE), and predicted Aligned Error
(PAE). We normalize these scores (noting that pDE and pAE are unbounded and must be
transformed and inverted) before averaging to produce a composite ranking score by
which the top k < M candidates are selected. Although the confidence module is efficient —

and its scores well-correlated with supervised metrics - we do not rely on it alone for
evaluating real-world binding affinity. As such, we employ this on-model scoring strategy for
efficient pre-ranking, thereby reducing the downstream computational cost of re-folding
and scoring designs with AbsciBind.

AbsciDiff Training

Fine-tuning: We initialize AbsciDiff using the weights from the provided Boltz-1 checkpoint
and fine-tune the model on a subset of AbData. As described earlier, redundant dataset
entries were filtered based on sequence similarity thresholds, and data were split using a
combination of temporal and sequence similarity-based criteria. Training follows Boltz-1
defaults with the number of learning rate steps reduced to 20 and an effective batch size of
64 for 10 epochs.

Cropping: Input structures are spatially cropped to a maximum of 512 residues, with larger
crop sizes showing minimal improvement on sampled antibody-antigen interface quality.
The cropping strategy centers the representation on the antibody-antigen interface and
requires that: (1) the variable antibody region (Fv) is always included; (2) antibody constant
domains are always excluded; (3) the remaining budget is allocated to antigen residues in
order of the smallest distance to the epitope.

2.3.2 Sequence Design via IgDesign?2

IgDesign2 Problem Formulation
We model the joint probability of the unknown sequence region R using an autoregressive
factorization:

R = (r,1y, ...,Ty),
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where each amino acid r; is conditioned on previously generated positions r.;, backlbone
structure X, and known sequence context €. Our goal is to find the neural network
parameters 6 that maximize the likelihood of the training data under this scheme.

IgDesign2 Model Architecture

IgDesign2 combines a Graph Neural Network (GNN) encoder, a causal transformer
decoder, and a protein language model (pLM) refinement module into a structure-
conditioned sequence design system (Figure 4). The input to the encoder consists of the
four-atom representation of the protein backbone [N,C,,C,0] residues in which each
residue constitutes a node in a graph with k edges connecting to its nearest neighbors in
Euclidean space. We leverage PiFold’s [42] node and edge featurization scherme and mirror
their GNN message passing architecture for encoding the three-dimensional geometry of
each residue based on its atomic coordinates. The decoder ingests the structure
embeddings and any antigen and antibody framework sequence context for conditioning
the autoregressive CDR sequence generation process, which is applied in a randomly
shuffled decoding order via temperature-weighted sampling or beam search.

The heavy and light chain sequences are then provided to the IgBert paired antibody
language model [22] for structure-aware refinement. At every layer of the plLM’s
transformer, the pLM latent embeddings are fused with the final structure embedding in a
shared low-dimensional space before being projected back to the pL.M dimension for
processing by the subsequent transformer layer [20, 43, 44]. After the transformer has fully
processed the fused representation, the final latent representations of both the GNN and
pLM are decoded by their respective sequence prediction heads and integrated with a
residual connection to produce the final sequence output. This jointly optimized “generate-
and-refine” approach combines the strengths of both sequence modeling paradigms to
enhance the quality of our conditional CDR designs.
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Figure 4. Schematic illustrating IgDesign2 architecture for CDR sequence design. A GNN
encoder processes antibody-antigen structure features, followed by a causal transformer
decoder for autoregressive sequence generation. The decoder supports both
temperature-weighted sampling (for diversity) and beam search (for high-likelihood
sampling). Generated sequences are refined by a structure-aware paired antibody
language model. Red indicates model components developed specifically for this work.
Snowflakes indicate frozen pre-trained modules. Solid arrows show forward information
flow. Dotted arrows show recycled information flow.

IgDesign2 Pre-Training

We pre-train the encoder and decoder on protein-protein interaction examples from
AbData, spatially cropped in three dimensions around the interfacial region of the two chains
to a maximum of 500 total residues. We use the Adam optimizer with a learning rate of 103,
B = 0.9, and B, = 0.999, along with an effective batch size of 32 and a standard cross-entropy
loss over 20 possible amino acids. Early stopping is applied when the loss has not improved
for 10 consecutive epochs on the held-out validation set. We retain the published
hyperparameters of the original PiFold model for the encoder (dimension 128, 10 layers, 4
heads, 30 nearest neighbors in the structure graph), while the causal transformer decoder
consists of 10 standard transformer decoder layers with four attention heads and a
feedforward dimension of 512. We also apply Gaussian noise with a standard deviation of 0.1
A to the coordinates of each input structure during training to encourage robustness.

IgDesign2 Fine-Tuning

We fine-tune the model with the same hyperparameters, aside from two adjustments: we
reduce the effective batch size to 8 and terminate training when the cross-entropy loss over
the masked region has not improved for 5 consecutive epochs on the held-out validation
set. Antibody-antigen complexes are spatially cropped to a maximum of 600 residues
around the interacting residues of the antigen while retaining the full antibody Fv. The pLM
weights remain frozen throughout fine-tuning, while a trainable multi-layer perceptron
(MLP) isintroduced per pLM layer to fuse the incoming projections from PiFold and the pLM.
Each MLP consists of three standard linear layers of dimension 128, with RelLU activation
functions. The incoming projections from PiFold and the pLM reduce their respective
embeddings to 64 dimensions prior to concatenation, while the final projection maps the
128-dimensional MLP output back to the pLM embedding dimension. We compute the
cross-entropy loss over both the sequence produced by the causal decoder and the
sequence refined by the pLM, summing them to compute the total loss.

2.3.3 Design Filtering via AbsciBind

We create a protocol, AbsciBind, as a scoring method for antibody-antigen complexes,
leveraging the advantages of existing co-folding-based scoring approaches and identifying
workarounds to their limitations [6, 7, 33, 34]. We provide extended details on the
methodology underlying AbsciBind in Supplement §7.5. In brief, AbsciBind is a derivation of
AF_Unmasked [45], where the associated interface-predicted template modeling (ipTM)
score is computed with greater awareness of the relative arrangements of antibody heavy
and light chains in addition to antigen chains. We benchmark the resulting AbsciBind ipTM
Score against several existing comparable ipTM scores [27] via a binder vs. non-binder
discrimination task in an experimental set of eight antibody-antigen systems[21, 46]. Results
show that AbsciBind achieves the strongest average binder vs. non-binder discrimination in
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seven of eight targets (Figure 5) when the maximum ipTM score across all five AlphaFold-
Multimer (AFM) v2.3 model checkpoints is used for assessment.
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Figure 5. The AbsciBind protocol ipTM score outperforms comparable alternatives for
evaluating antibody-antigen complexes. Evaluation was performed on an experimental set
of eight antibody-antigen systems [21, 46]. All AbsciBind approaches were evaluated using
ipTM scores to ensure comparability with previously reported results. AUROC values for
GeoFlow-V3, Geoflow-V2, AFM-IG, Protenix, Boltz-2 and Chai-1 were sourced from
BioGeometry et al. 2025 [27]. Best AbsciBind ipTM is the maximum ipTM score across all five
AFM v2.3 model checkpoints for a given design. Selected AbsciBind ipTM uses the ipTM
score from AFM v2.3 Model 2 only (model 2 multimer v3 checkpoint).

Importantly, using only Model 2 yields an approximately 80% reduction in runtime compared
with evaluating designs with all five models. Given this substantial runtime reduction and the
strong classification performance, Model 2 is used to support the AbsciBind protocol for the
remainder of the present effort.

We define a final AbsciBind Score as the mean of the default AbsciBind protocolipTM score
(computed over all antibody and antigen chains and interfaces) and the Antibody-Aligned
ipTM score (Supplement §7.5). We design this metric to integrate a global interface score
with an antibody-aligned, consistently normalized assessment of the antibody-antigen
interface’s quality. We use this score to evaluate AbsciGen designs for de novo library design
(82.4.3) and to select mutant variants for lead optimization efforts (§2.4.4).

2.3.4 In silico Benchmarking of Origin-1

We benchmark AbsciGen against RFantibody [10], a diffusion-based antibody design
method selected for its experimentally-validated design pipeline. To ensure a fair
comparison, we modify RFantibody’s input pre-processing to initialize idealized coordinates
at the origin for all CDR residues (Supplement §7.3). All other RFantibody settings remain at
their default values. For AbsciGen, we disable the beam search feature of IgDesign2 and
instead use autoregressive sampling to encourage greater sequence diversity. All other
design choices remain as described below and in the Methods.

1



Our objective was to evaluate AbsciGen and RFantibody in their respective abilities to design
antibodies against epitopes that lacked associated target structures in complex with
antibody or protein binders (“zero-prior” epitopes). To this end, we applied both approaches
to design CDR regions using multiple frameworks, CDR lengths, and putative epitopes. We
then assessed the quality of generated designs with unsupervised metrics. We used
AbsciBind Score (§2.3.3) to compare AbsciGen and RFantibody design performance. Of
note, AbsciGen was developed without the explicit goal of maximizing AbsciBind Score. We
also computed Observed Antibody Space identity search (OASis [47]) scores associated
with AbsciGen vs. RFantibody sequences to compare the humanness achieved via both
approaches.

Test Set

We test AbsciGen and RFantibody against four targets with no antibody-antigen complex
structures in our training data: COL6A3, AZGP1, IL36RA, and CHI3L2. The epitope selection
process is described in §2.4.2.

Frameworks

For each target, we employ three well-characterized therapeutic antibody frameworks:
trastuzumab, relatlimab, and sotrovimab. This standard design strategy mitigates the risk of
memorizing native antibody-antigen pairs and ensures robust starting scaffolds with
established developability profiles.

Design Specification

We generate diverse design specifications by varying HCDR3 length (8-26 residues), LCDR3
length (8-10 residues), and epitope subsampling (retaining 45-90% of identified epitope
residues). Epitope subsampling reflects uncertainty in epitope identification and
encourages exploration of diverse binding modes within the target region. This procedure
yielded 102 distinct design specifications per target. For each design specification, we
generate one structure and eight sequences.

2.4 Experimental Validation of Origin-1

To experimentally test Origin-1's ability to design full-length monoclonal antibodies in a low-
throughput setting, we selected fewer than one hundred designs per target and ordered
them as monoclonal antibodies for low-throughput in vitro screening. Designs that
demonstrated successful binding in primary surface plasmon resonance (SPR) screens
were further validated using biolayer interferometry (BLI), complexation analyses,
developability assessments, and functional assays. Where appropriate, cryogenic electron
microscopy (Cryo-EM) was used for structure confirmation (Figure 1). Together, these
approaches allowed us to assess AbsciGen’s ability to design high quality binders to novel
binding locations, and AbsciBind’s ability to select winning candidates from amongst these
designs.

2.41 Target Selection
We selected targets to test Origin-1's performance by prioritizing entries with high structural

resolution (<3.5 A) and few missing/unresolved residues, in addition to targets for which
antigenreagents were commercially procurable (Table 1). To extend beyond what has been
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demonstrated in recent reports of successful de novo antibody design [23-27], we
additionally confirmed that the PDB did not contain structures of antibodies or other
proteins in complex with these targets, requiring Origin-1to identify novel binding interfaces
(“zero-prior epitopes”), rather than providing Origin-1 with known binding interfaces to
increase the likelihood of successful binder design. We further increased the complexity of
the challenge by selecting targets that maintained limited sequence overlap (<60% identity
by MMseqs? [48]) with any protein for which a protein-protein complex structure existed in
the PDB, ensuring that the selected targets were understudied and required novel epitope
identification. This approach allowed us to evaluate Origin-1s generalizability. We
experimentally validated Origin-1on ten targets meeting these criteria (Table 1).

IL36RA was of particular interest given its role as an anti-inflammatory cytokine that inhibits
binding of the proinflammatory cytokines IL364q, IL36B, and IL36y to the IL36 receptor (IL36R).
This axis play s a complex role in some cancers where IL368 and IL36y are believed to
promote inflammation and therefore promote anti-tumor immune response, which would
be dampened by IL36RA [49]. Inhibition of IL36RA may enhance IL-36R signaling, and could
promote immune infiltration into previously “immune-cold” tumors.

Target PDB ID Vendor Catalog Valency

COL6A3 1KTH Sino Biological 16125-HO7H Monovalent
AZGP1 6R2U Sino Biological 13242-HO8H Monovalent
IL36RA 4pP0J Peprotech* 200-36RA Monovalent
CHI3L2 4P8U R&D Systems 5112-CH-050 Monovalent
ALCAM 5A1F Sino Biological 10045-HO8H Monovalent
AMBP 4ES7 Sino Biological 13141-HO8H1 Monovalent
CLEC4A 5B1W R&D Systems 9784-Cl Monovalent
KLK1 1SPJ Sino Biological 10407-HO8H Monovalent
FOLR1 4KM6 Sino Biological 11241-HO8H Monovalent
FOLR2 4KMY Sino Biological 11219-HO8H Monovalent

Table 1. List of targets used for Origin-1 experimental validation. * Peprotech is now owned
and operated by Thermo Fisher Scientific. Of note, there is one PDB entry of AZGP1 in
complex with a non-antibody protein that was missed during selection due to an error in the
PDB biocassembly; thus, for AZGP1 we required the model to identify epitopes that were
distinct from the solved interface in this PDB entry.
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2.4.2 Epitope selection, framework selection, and CDR length determination

Epitope selection

To select epitopes per target, we surveyed the literature to assess each target’s biological
role, surface geometry, chemical properties, and any reported interactions with other
proteins, peptides, or small molecule ligands. We prioritized solvent-accessible surface
regions maintaining curvature (i.e., knobs or holes), hydrophobic core patches surrounded
by hydrophilic/nucleophilic residues, and structured regions as opposed to disordered/loop
regions (Figure 6). For example, for IL36RA we identified a putative biologically relevant
epitope to enable downstream functional characterization of any binders. In particular, we
used the complex structure of A-552, a small molecule antagonist of IL36y, [50] from
PDB:6P9E to convert a functional binding pocket into a putative functional epitope of IL36y,
a homolog of IL36RA. We then mapped this putative epitope onto IL36RA via structural
homology.

COL6A3 IL36RA
PDB:1KTH PDB:4P0J

Epitope 1: D24, P25, N26, T27, K28, $29, C30 Epitope 1: V44, S55, R102, D104, L107,
) : e . T108, Y146, F14
Epitope 2;: S47, Q48, K49, E50, C51, E52, K53 e OeErl

AZGP1 CHI3L2
PDB:6R2U PDB:4P8U

Epitope 1: 176, F77, Y117, W134, W148, Epitope 1: Y104, Y146, A186, Q189, F214,
Y154, R157 W218, Y243
Epitope 2: K202, K204, C205, W245, V247 Epitope 2: Y104, L105, 1145, D148, Q149,

Q189, M190, W218, K220
Epitope 3: W36, D39, K74, D75, K76, L105

Epitope 3: L69, R73, Y161, E165

Figure 6. List of residues selected per epitope per target for which Origin-1 binders were
confirmed.
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During inference, the epitope feature was subsampled from the full epitope as follows. For
a single input sample, the number of epitope feature residues was sampled uniformly
between 0.45 and 0.9 times the number of full epitope residues, with a minimum of four
epitope feature residues. The epitope feature positions were then sampled without
replacement from the full epitope until this number was reached.

Framework Selection

We selected four antibody frameworks (FWRs) from clinically approved therapeutic
antibodies with diverse germlines, Kappa light chains, and for which high resolution (<3.5 A)
experimental structures were available (Table 2). An equal number of design specifications
were allocated to each framework.

Framework PDB ID Heavy Chain Germline Light Chain Germline
Trastuzumab IN8Z IGHV3-66 IGKV1-39
Relatlimab 7UM3 IGHV4-34 IGKV3-11

Dupilumab 6WG8 IGHV3-23 IGKV2D-28
Sotrovimab 6WS6 IGHV1-18 IGKV3-20

Table 2. Summary of frameworks (FWRs) used as inputs for Origin-1in vitro performance
evaluation. PDB = Protein Data Bank.

CDR Length Determination

HCDR1, HCDR2, and LCDR2 lengths were fixed to the germline CDR length, as determined
by the selected FWRs. HCDR3, LCDR1, and LCDR3 lengths were sampled independently of
one another from the empirical distributions observed within AbData (Supplementary Table
5). The distribution was truncated to prevent overly short or overly long CDRs. We used the
Kabat [51] definition of LCDR2 and the IMGT [52] definition of HCDR1, HCDR2, HCDR3, LCDR1,
and LCDR3. We used Kabat for LCDR2 to extend the typically very short (3 amino acid)
LCDR2 by IMGT notation.

Design Specifications

For each target, 3360 “design specifications” (configurations of target, epitope subsample,
FWR, and CDR lengths) were sampled to provide diverse model input feature sets within the
constraints of the design problem.

2.4.3 Antibody library design

Given a set of sampled input specifications, Origin-1was applied through a series of in silico
search and evaluation steps to iteratively design and score candidate binders to the
intended targets at the desired epitopes. These stages comprised Wide Structure Search,
Deep Structure Search, and Sequence Search (Supplementary Figure 15). Different metrics
were used to evaluate designs at each of these stages depending on the type of output
being assessed (Supplementary Table 6). The motivation for spreading design and GPU
compute allocation across three stages was to concentrate resources on the most
promising candidates in a particular search effort. During Wide Structure Search, backbone
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structures were designed for a large number of design specifications, and design
specifications corresponding to the top structures were selected. During Deep Structure
Search, additional structures were generated based on these design specifications, and top
structures were selected. During Sequence Search, additional sequences were designed
for the top structures, culminating in selecting the top sequence for each of the top 95
structures. This scaling approach enabled stepwise improvements in AbsciBind Score
among top designs with each search stage (Supplementary Figure 16). \We describe the
strategies underlying Wide Structure Search, Deep Structure Search, and Sequence Search
in Supplement §7.6.1 and include detailed library design methodology in Supplement §7.6.

2.4.4 Lead Optimization

We optimized the top designs against all four targets, as well as a second design against
AZGP1, by modifying Hie et al.’s Efficient Evolution strategy [53, 54] to generate a library of
single-mutant variants relative to the parent designs. Specifically, we integrated the
AbsciBind protocol into this approach and used AbsciBind Score to support selection of
variants for downstream experiments. A collection of protein language models (ESM-1b[55],
ESM-1v [56], ESM2-650M [57], and AbLang?2 [58]) was used in addition to the AbsciBind
Score. Scoring, selection, and optimized variant library creation are described in Supplement
§7.7.

2.4.5 In vitro Assessment of Computational Designs

In vitro experimental methods used to assess binding, developability, structural fidelity, and
function are reported in Supplement §7.8.

3 Results

3.1In silico Benchmarking of Origin-1 Reveals Superior Antibody-
Antigen Complex Design Relative to Field Standard

Results from AbsciGen vs. RFantibody benchmarking experiments revealed that AbsciGen
outperforms RFantibody when designing antibody sequences and structures for targets
without known binders according to in silico unsupervised metrics (Table 3, Figure 7). Using
the AbsciBind Score, internally validated to have high discrimination power for binding
prediction, AbsciGen produces 28.37% of designs with AbsciBind Score = 0.5, compared to
1.49% for RFantibody, constituting a nearly 20-fold improvement. AbsciGen also achieves a
higher mean AbsciBind Score than RFantibody, further demonstrating its superior
performance for antibody-antigen binding prediction. Furthermore, AbsciBind Score
distributions across four targets showed that AbsciGen frequently generates designs with
significantly higher scores, indicating improved overall quality. Additional results from
AbsciGen benchmarking experiments, including per-target statistics and a comparison
between the original RFantibody and our modified version, can be found in §7.3.
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Method Mean AbsciBind Score % Designs with AbsciBind Score =2 0.5

RFantibody 0.270+0.112 1.49%

AbsciGen 0.422 £ 0.116* 28.37%

Table 3. Summary of results from AbsciGen vs. RFantibody benchmarking experiments. The
AbsciBind Score is computed as the average of ipTM and Antibody-Aligned ipTM scores
from the AbsciBind protocol. Metrics are computed across all targets assessed. Results are
reported as mean +/- standard deviation. * indicates p < 0.001 by Mann-Whitney U. Best
overallis marked in bold.

AbsciBind Score Distributions by Target

[ AbsciGen
[ RFantibody

IL36RA

AZGP1

CHI3L2

COL6A3

0.0 0.2 0.4 0.6 0.8 1.0

AbsciBind Score

Figure 7. Distribution of AbsciBind Scores shows that AbsciGen generates designs with
higher AbsciBind Scores than RFantibody.

OASis score distributions for sequences generated by AbsciGen vs. RFantibody for COL6A3,
AZGP1, CHI3L2, and IL36RA suggest that AbsciGen achieves significantly higher humanness
scores than RFantibody (Figure 8). We suspect this is due to IgDesign2’s fine-tuning on
antibody-antigen complexes, which ProteinMPNN lacks.
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OASis Humanness Score Distribution

0 [ AbsciGen
[ RFantibody

0.0 0.2 0.4 0.6 0.8 1.0
OASis Percentile

Figure 8. Distribution of OASis percentile scores for sequences generated by both models
across four targets. Higher percentiles suggest sequences are more likely to exhibit human-
like antibody gualities.

3.2 SPR Identifies Multiple Hits per Target

SPR identified three Origin-1 hits against COL6A3, four against AZGP1, one against CHI3L2,
and one against IL36RA (Figures 9-12). As noted in the Methods, we screened all designs
against at least two non-antigen commercial protein targets (“off-targets”) to assess
polyspecificity, and all antigens against unintended designs to assess target stickiness. All of
the aforementioned hits demonstrated binding to their designed antigen, did not bind to
unintended designs, and did not bind to the off-target proteins based on binding specificity
criteria described in Supplement §7.8.2. This result inspires confidence that Origin-1 can de
novo design antibody binders to novel epitopes. Additional binding results and measured
binding affinities are reported in Supplement §7.8.2.
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Figure 9. In vitro experimentation confirms that Origin-1generated a de novo binder against
a novel epitope on COLBA3. (A) SPR demonstrates that the top design binds to COL6A3 in
mAb format and does not bind to either of two unintended targets (“Off-Target 1” and “Off-
Target 27). (B) BLI confirms that the top design binds to COL6A3 in Fab format. (C)
Complexation experiment confirms that the top design, in Fab format, binds to COL6A3 in
solution. (D) Cryo-EM of top design complexed with COL6A3 confirms epitope-specificity
and atomic accuracy of the Origin-1 computational model. (E) CDR-specific analysis of
model vs. solved complex structure confirms atomic accuracy.
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A Top Design vs. AZGP1(SPR)  Top Design vs. Off-Target 1 (SPR) Top Design vs. Off-Target 2 (SPR) B Top Design vs. AZGP1 (BLI)
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Figure 10. /n vitro experimentation confirms that Origin-1generated a de novo binder against
a novel epitope on AZGP1. (A) SPR demonstrates that the top design binds to AZGP1in mAb
format and does not bind to either of two unintended targets (“Off-Target 1" and “Off-
Target 27). (B) BLI confirms that the top design binds to AZGP1 in Fab format. (C)
Complexation experiment confirms that the top design, in Fab format, binds to AZGP1 in
solution. (D) Cryo-EM of top design complexed with AZGP1 confirms epitope specificity and
atomic accuracy of the Origin-1 computational model. (E) CDR-specific analysis of model
vs. solved complex structure confirms atomic accuracy.
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A Top Design vs. CHI3L2 (SPR)  Top Design vs. Off-Target 1 (SPR) Top Design vs. Off-Target 2 (SPR) D Model of Top CHI3L2 Design
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Figure 11. /n vitro experimentation confirms that Origin-1generated a de novo binder against
anovel epitope on CHI3L2. (A) SPR demonstrates that the top design binds to CHI3L2 in mAb
format and does not bind to either of two unintended targets (“Off-Target 1" and “Off-
Target 27). (B) BLI confirms that the two optimized variants bind to CHI3L2 in Fab format. (C)
Complexation experiment confirms that optimized variant 1, in Fab format, binds to CHI3L2
in solution. (D) Origin-1computational model of top design in complex with CHI3L2 is shown.
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A Top Design vs. IL36RA (SPR)  Top Design vs. Off-Target1 (SPR) Top Design vs. Off-Target 2 (SPR) E Model of Top IL36RA Design
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Figure 12. In vitro experimentation confirms that Origin-1generated a de novo binder against
anovel epitope on IL36RA. (A) SPR demonstrates that the top design binds to IL36RA in mAb
format and does not bind to either of two unintended targets (“Off-Target 17 and “Off-
Target 2”).(B) BLI confirms that the two optimized variants bind to IL36RA. (C) Complexation
experiment confirms that optimized variant 1, in Fab format, binds to IL36RA in solution. (D)
HEKBIlue functional assays demonstrate that the top two optimized variants antagonize
IL36RA-mediated inhibition. (E) Origin-1computational model of top design in complex with
IL36RA is shown.

3.3 BLIand Complexation via aSEC Confirm Binding

To further validate hits identified via SPR, we performed both on-target and off-target BLI
experimentsin mAb format. Hits in mAb format were assessed against their intended target;
BLI confirmed one hit against COL6A3 (Figure 9), and two hits against AZGP1 (Figure 10).
Limited mAb BLI binding was observed for the hits against CHI3L2 and IL36RA (data not
shown). All hits lacked binding against a negative control antigen.

In preparation for downstream complexation experiments, BLI-confirmed hits were
reformatted as Fabs and were re-assessed for binding in BLI. Both AZGP1 hits were
confirmed to bind in both assay orientations (Figure 10, antigen-immobilized data not
shown). The COL6A3 hit bound in the original orientation of the assay (antibody-
immobilized, Figure 9), but failed to bind in the flipped orientation (antigen-immobilized, data
not shown). We hypothesize that this hit bound in only one orientation due to the small size
of the antigen and potential tag interference impacting the binding interface when the
antigen was immobilized on the probe.
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The most promising hits against COL6A3 and AZGP1 were then complexed with their
respective targets in Fab format. Complexes were successfully formed for both design-
target pairs, confirming binding (Figures 9 and 10; Supplement §7.8.4).

3.4 Optimization of Zero-Shot Designs Improves Affinity and
Confirms Origin-1s Success in Binder Identification

As mentioned above, SPR-identified hits for CHI3L2 and IL36RA could not subsequently be
confirmed by BLI. We reasoned the lack of BLI confirmation was due to low affinity (Kp >
2 uM) and chose not to fully characterize them due to the large amount of antigen that
would be required.

Instead, we used our lead optimization platform to affinity-mature not only the SPR-
identified hits against CHI3L2 and IL36RA, but also the hits against COL6A3 and AZGP1 that
were confirmed in BLI. For each of these hits, we designed optimization libraries composed
of single-mutants relative to the parental hit sequences. This approach resulted in affinity
improvements across all hits, with the greatest improvement (68-fold) observed for IL36RA
(Figure 12).

We repeated SPR and BLI experiments using the top affinity-matured designs against
CHI3L2 and IL36RA, which demonstrated approximately 4X and 68X increases in affinity
relative to their parent designs, respectively. We also validated binding by complexing
CHI3L2 and IL36RA with their respective top affinity-matured design variants (Figures 11 and
12; Supplement §7.8.4). This result confirms that Origin-1 was able to generate binders
against CHI3L2 and IL36RA and further demonstrates the utility of our platform to identify

and rescue even very weak binders.

3.5 Developability Assessments

All Origin-1 binders were evaluated across a panel of developability and material quality
properties, including polyreactivity, polydispersity, self-association, hydrophobicity, melting
temperature, and purity. COL6A3, CHI3L2, and IL36RA binders met therapeutically
acceptable criteria for these developability properties, aside from one hydrophobicity flag
associated with the IL36RA binder. For AZGP1, our top binder was flagged for self-
association, hydrophobicity, and polyreactivity (Table 4). Methods for developability
assessments are reported in Supplement §7.8.5.
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Target Polyreactivity Polyreactivity HIC AC- DSF,Tmi1 DLS

(Anti-Insulin, (Anti-DNA, (RRT) SINS (°C) (Cumulant PDI)
RNS) RNS) (nM)

COL6A3 35 3.8 1.03 1.6 68.00 0.00

AZGP1 15.8 8.5 N.D. 257 77.86 0.08

IL36RA 3.0 3.6 1.19 0.6 70.60 0.00

CHI3L2 3.6 4.0 0.91 -041 70.20 0.01

Table 4. Summary of developability results from top binders across COL6A3, AZGP1, IL36RA,
and CHI3L2; RNS = Range Normalized Sum; HIC = Hydrophobic Interaction Chromatography,
RRT = Relative Retention Time; AC-SINS = Affinity-Capture Self-Interaction Nanoparticle
Spectroscopy; DSF = Differential Scanning Fluorimetry; DLS = Dynamic Light Scattering; PDI
= Polydispersity Index; N.D. = Not Detected.

3.6 Cryo-EM Confirms Atomic Accuracy of Designs Against
COL6A3 and AZGP1

Cryo-EM was used to solve the structures of the top design against each of COL6A3 and
AZGP1. The experimental structures were resolved with 3 A and 3.1 A resolution, respectively,
and show high fidelity with the designed structures generated by Origin-1, confirming both
epitope-specificity and atomic accuracy (Figures 9 and 10).

The computational model of the COL6A3 design complex and the corresponding
experimental complex structure have an all-atom global RMSD of 2.56 A, interface RMSD of
0.96 A, ligand RMSD of 1.48 A, and a DockQ [59] of 0.83. When overlaid, the CDRs have all-
atom RMSDs of 0.738 A, 0.850 A, 1.486 A, 1.098 A, 0.817 A, and 0.661 A for LCDR1, LCDR2,
LCDR3, HCDR1, HCDR2, and HCDRS3, respectively.

The computational model of the AZGP1 design complex and the corresponding
experimental complex structure have an all-atom global RMSD of 1.79 A, interface RMSD of
135 A, ligand RMSD of 1.9 A, and a DockQ of 0.73. When overlaid, the CDRs have all-atom
RMSDs of 2.056 A,1.904 A,1.487 A, 0.751A,1.020 A, and 1.411 A for LCDR1, LCDR2, LCDR3, HCDR1,
HCDR2, and HCDR3, respectively.

3.7 HEKBIlue Assessment Confirms Functionality of IL36RA Binder

The top two affinity-matured variants along with the parent IL36RA design were assessed
for function in a HEKBIlue assay. While the parent was not functional, the affinity-matured
variants displayed antagonism that correlated with soluble protein affinity, suggesting a
clear path to a highly potent molecule. The highest affinity variant achieved an ECso of 104
nM.
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4 Discussion

Here we develop and experimentally validate Origin-1, an Al platform for de novo antibody
design against “zero-prior” epitopes. We describe the methodology underlying Origin-1's
component Al models: AbsciDiff and IgDesign2 (together, AbsciGen) for generative
structure and sequence design, respectively, and AbsciBind for design scoring and
selection for downstream experimental validation. Our in silico benchmarking of AbsciGen
and AbsciBind confirms that the respective strategies compete with, and outperform
existing protocols for antibody-antigen complex design and evaluation (Table 3, Figures 7
and 8), and our in vitro assessments confirm that in fewer than one hundred attempts,
Origin-1 can generate designs that bind with specificity and are developable (Figures 9-12,
Table 4). We show that our modeled antibody designs are consistent with their experimental
structures with atomic accuracy (Figures 9 and 10), and we demonstrate our ability to use
AbsciBind Scores to identify single-mutant variants of our zero-shot designs that are
functional (Figure 12). Together, these results motivate further investigation into Origin-1's
potential to generate antibody therapeutic candidates against novel disease targets.

One limitation of the current effort is that the hit rates obtained by Origin-1in a zero-shot
manner were lower (at most four from approximately 100 designs per target) than hit rates
that have recently been reported by others in the field [23-27]. In interpreting this, one
should consider both the design challenge undertaken and the extent of experimental
validation conducted to support a reported hit rate. Here, to our knowledge, we extend the
complexity of our design challenge beyond what others have reported by designing
antibodies against “zero-prior” epitopes for which there are no publicly available complex
structures that directly provide epitope residue inputs to guide antibody design. In other
words, Origin-1 had to identify antigen residues that were viable candidates for antibody
binding and sample correctly from these residues to guide design toward these regions, in
addition to correctly scoring designs and selecting winning candidates from among those
proposed. We increased the task complexity in this way to test Origin-1in a setting that more
closely resembles a challenging drug design effort, where often the epitope itself is
unknown and must be determined de novo. Beyond increasing the complexity of the design
challenge, we also set strict criteria for labeling a design a binder by requiring designs to
meet criteria for binding across multiple orthogonal assays as well as confirming designs
bind only to their intended targets and that antigens bind only to their intended designs. Our
results indicate that Origin-1 is capable of designing antibodies that bind to targets of
interest with limited input guiding design localization, and with stringent hit definition criteria,
inspiring confidence in the reproducibility, reliability, and translatability of our results. We
provide the comprehensive set of in vitro data generated in the course of this effort and
encourage our colleagues in the field to leverage these datasets to benchmark their own
efforts in antibody design.

Future development should prioritize improving Al antibody design protocols such that they
directly address the most significant challenges impacting traditional antibody discovery
campaigns today: target difficulty, costs, and timelines. Improvements in these areas will
ensure that our technology continues to progress toward addressing unmet needs that
ultimately benefit patients requiring innovative, cost-effective solutions to treat their
ailments.
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7 Supplementary Material

7.1 AbData Inclusion Criteria

We applied both temporal and sequence homology filters to AbData-curated complexes to
eliminate overlap between our training, validation, and test sets. Temporal filters were
applied first, whereby all complexes from PDB entries released before 2024-01-01 were
included in training, between 2024-01-01 and 2024-09-30 in validation, and between 2024-
09-01and 2025-07-10in test. We applied specific sequence homology filters per split, where
homology filters defined using the training set were applied to the validation and test set,
and filters defined using the validation set were applied to the test set. For antibody-antigen
complexes specifically, we removed all entries containing an antigen with greater than 40%
sequence similarity to any antigen in the relevant reference set. For protein-protein
complexes, we removed all entries for which either chain had greater than 40% sequence
similarity to any chain in the relevant reference set.

Finally, we filtered for redundancy by clustering the antigen and Fv sequences using 40%
and 100% sequence identity, respectively. Within each cluster-pair, we selected only a single
example containing optimal resolution, proportion of resolved residues, and interface
contacts. For protein-protein interactions, we used a similar strategy, adjusted by clustering
interface chains at 95% sequence identity and selecting within cluster pairs.

The final quantities of antibody-antigen entries in the training / validation / test set splits
were 3242 / 63 / 84, respectively, covering 2848 / 62 / 84 respective unique HCDR3
seqguences. The final quantities of protein-protein complexes were 29835 / 356 / 322,
respectively.

We provide a comprehensive list of our antibody-antigen inclusion criteria for AbData
below:
¢ No Fvs without a heavy chain
e No unbound Fvs
e No Fvs bound to short antigens, defined as antigens containing fewer than 15
residues
e No Fvs with small epitopes, defined as epitopes containing fewer than 5 residues
e No Fvs with any missing CDR residues
e No Fvs with buried surface area less than 500 A? at the antibody-antigen interface
e No Fvs where greater than 50% of CDR contacts occurred with non-protein
molecules
e Resolution must be less than 9 A

Protein-protein interactions were additionally filtered as follows:
e Only dimeric interfaces (i.e. no additional chains at the interface)
e Nointerfaces with buried surface area <500 A2
¢ No complexes with > 2500 residues
¢ No complexes with <50 residues

For antibody-antigen validation and test sets, we applied the following filters in addition to
the above:
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e No Fvs with cysteines in CDRs
e Resolution must be less than 3.5 A

7.2 Structure Design with AbsciDiff

Design Region Atom Representation

AbsciDiff enables open-ended generation of amino acid sidechains by representing all
design region residues in Atom14 notation, with excess “virtual” atoms placed at each
residue’s Ca position (Supplementary Figure 1). This superposition technique allows the
model to generate structures without committing to specific residue identities during
diffusion. The sequence can subsequently be inferred from the generated backbone
structure using methods such as IgDesign2.

Learned Atom14 Superposition
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Supplementary Figure 1. An example of AbsciDiff’s atom superposition technique. Non-
design region amino acids are represented with their true atomic structure since their
identities are fixed a priori. Design region residues (see Leu in blue) use the Atomi14
representation, where excess virtual atoms beyond the residue’s actual atom count are
placed at the Ca position.

Partial Diffusion

In addition to the modifications described in §2.3.1, AbsciDiff’s diffusion module also includes

key modifications for partial diffusion. In partial diffusion, sampled datapoints are initialized

from a partially noised version of the input rather than pure noise. When enabled, the

diffusion process begins at noise level:
Oinit = UNsteps_Npartial

The noised initialization is given by:

Xo = Oinit * € T Xconditioned
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where e ~ N(0,1), and Xconditioneda COreSPONAs to the conditioned coordinates (antigen and
framework). This mechanism enables the model to focus the sampling process when full,
from-scratch generation is not required, allowing refinement of existing favorable designs
or diversification of fixed binding complexes.

7.3 Coordinate Initialization for RFantibody Benchmarking

De novo antibody design using RFantibody required careful attention to coordinate
initialization to achieve reasonable outputs. Without modification, we observed reduced
performance compared to the supervised benchmarking setting, including chain breaks in
predicted loop structures and glycine-dominated sequences from ProteinMPNN.

Supplementary Figure 2: RFantibody loop quality depends on coordinate initialization: chain
breaks appear when loop coordinates are placed at the origin (left), but not when idealized
coordinates are provided (right). Provided framework PDB files all include ground-truth loop
coordinates, motivating our pre-processing changes for a fair de novo benchmark.

To avoid potential information leakage under the de novo setting, our pipeline preprocesses
structures such that CDR loop coordinates are placed at the origin for the designed number
of residues, and CDR sequences are populated with glycines. While RFantibody fully masks
features for designed loops, we found that initial loop coordinates influence the diffusion
process. Specifically, RFantibody's reverse diffusion implementation during inference
parameterizes the initial noise distribution on the input Ca coordinates at timestep t =T,
(rather than sampling from an unconditional prior) causing spatial biases in input
coordinates to persist through noising.

By default, when a designed loop length differs from the input “framework” PDB, RFantibody
initializes  coordinates using idealized backbones with random noise (via
“adjust_loop_lengths”). However, when the loop length already matches—as in our pipeline,
where we prepare PDBs for each desired length with origin-initialized CDR coordinates —
the model uses the provided coordinates directly. What’s more, provided examples in the
public RFantibody release include actual loop coordinates from the RCSB PDB entry. As such,
to ensure a fair benchmark on examples lacking provided loop coordinates while also
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limiting changes to the RFantibody codebase, we applied an idealized initialization based on
loop “dilation” logic to all CDR coordinates.
Specifically,

x((:gR < xideal + € €~ u(_Sl 5’ )3;

Xigeal = {N(—0.527,1.359,0), Cr(0, 0, 0), C(1.523, 0, 0)}.

This approach does not fully decouple designs from initialization—loop length and random
seed stillinfluence the result—but it respects the intention of the existing loop length dilation
methodology without introducing more substantial modifications.

7.4 Additional AbsciGen Results

7.4.1 Supervised Task Design and Results

Experimental Setup

We evaluate structure and sequence generation against targets with known antibody
binders. We do so by taking a wild-type complex, masking CDR and inter-chain distance
features, and providing the remaining data features, along with native epitope indices and
CDR lengths, to each method. Both methods execute their full pipelines: AbsciGen
(AbsciDiff followed by IgDesign2) versus RFantibody (RFdiffusion [9] followed by
ProteinMPNN [17]). For sequence design, IgDesign2 autoregressively designs all six CDR
sequences conditioning on structural context, while ProteinMPNN uses default settings;
both produce eight sequences per structure.

Metrics: We use DockQ [59] and antigen-aligned HCDR3 Root Mean Square Deviation
(RMSD) to assess structural fidelity, and HCDR3 amino acid recovery (AAR) to assess
sequence recovery. While design models are inherently open-ended, we reason that
successful models should recover the wild-type structure and sequence given sufficient
sampling and training objective.

Dataset: We select 44 high-quality antibody-antigen complexes from AbData, balancing
target diversity, complex size, and training date cutoff. All complexes are cropped to 512
residues using our spatial cropping method (§2.3.1).

Sampling: For each complex, we generate n = 100 final structures and m = 8 sequences per
structure. AbsciDiff produces M = 24 structure samples per generation process, which are
ranked (82.3.1) by the confidence module and reduced to K = 3 final outputs. For this
analysis, we uniformly randomly sample K = 1 of these to match the number of designs
between pipelines.

Supervised Task Results

Supplementary Table 1 demonstrates that AbsciGen substantially outperforms RFantibody
across all metrics. Lower HCDR3 RMSD indicates better structural agreement with the native
binding pose, while higher DockQ scores (threshold = 0.23 for acceptable quality) indicate
more accurate antibody-antigen interface geometry. For sequence recovery, AbsciGen
achieves substantially higher maximum HCDR3 amino acid recovery (AAR) averaged across
targets (0.647 vs. 0.371), demonstrating IgDesign2’s effectiveness. We note that sequence
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recovery is coupled to structure quality - IgDesign2 benefits from higher-fidelity structures
produced by AbsciDiff.

HCDR3RMSD (A)!  DockQ™T DockQ Success T HCDR3 AAR T
Min Median  Min Median  Min Median  Min Median
RFantibody 6.432 13.632 0.367 0.128 77.3% 6.8% 0.371 o017

AbsciGen 3.256* 8.166* 0.509* 0.235* 95.5% 47.7% 0.647* 0.401*

Supplementary Table 1: Supervised benchmarking results. Metrics are computed for each
structure or sequence generation, aggregated per-target using min, max, or median, then
averaged across targets. DockQ Success reports the fraction of targets with aggregated
DockQ > 0.23. HCDR3 RMSD is computed after aligning on the target structure. * indicates
p < 0.001 by Mann-Whitney U. Best overall is marked in bold.

Supplementary Figure 3 shows per-target results, where AbsciGen achieves acceptable
DockQ scores (2 0.23) on 95.5% of targets, compared to 77.3% for RFantibody.
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Supplementary Figure 3. Per-target comparison of maximum DockQ scores for AbsciGen
and RFantibody. The acceptable threshold (DockQ = 0.23) is indicated by the dashed line.
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Supplementary Figure 4. Per-target comparison of median DockQ scores for AbsciGen and

RFantibody across all targets in the supervised benchmarking task. The acceptable
threshold (DockQ = 0.23) is indicated by the dashed line.
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Supplementary Figure 5. Distribution of supervised benchmark metrics for AbsciGen and
RFantibody across all generated samples. Lower HCDR3 RMSD indicates better structural
agreement with the native binding pose.

7.4.2 Additional Unsupervised Task Results
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Supplementary Figure 6. Per-target comparison of mean AbsciBind Scores for AbsciGen
and RFantibody on the unsupervised design task. The original RFantibody implementation
without our initialization modification is included for comparison.
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Supplementary Figure 7. Per-target comparison of median AbsciBind Score scores for
AbsciGen and RFantibody on the unsupervised design task. Across all targets, AbsciGen
consistently achieves higher median AbsciBind Scores than RFantibody, indicating
improved interface quality in its generated designs. The original RFantibody implementation
without our initialization modification is included for comparison.
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Supplementary Figure 8. Epitope contact conditioning study. We evaluate how varying the
number of provided epitope contact residues impacts the binding, as measured by
AbsciBind Score. No significant improvement in the fraction of designs achieving AbsciBind
Score =z 0.5 is observed with increasing contact information. Notably, the maximum
AbsciBind Score for AbsciGen tends to decrease as more epitope contacts are specified,
whereas RFantibody shows an increasing trend. We hypothesize that adding contact
constraints may restrict the pose diversity for AbsciGen, while RFantibody may benefit from
enhanced conditioning, leading to a higher baseline performance. Left: Percentage of
designs with AbsciBind Score =z 0.5. Right: Maximum AbsciBind Score observed across
generated samples for each method.
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7.4.3 Sequence Diversity

We assess the diversity of generated HCDR3 sequences by evaluating the fraction of unique
seguences and pairwise sequence similarity (PSS) at two aggregation levels.

Pairwise Sequence Similarity (PSS)
For variable-length CDR sequences s; and s;, we compute the normalized Levenshtein

distance as
_ Lev(sys;)
d(si' S]') T max (Isql|s;])’

where Lev denotes Levenshtein distance. Pairwise Sequence Similarity is then defined as
PSS(sys;) = 1 —d(s;, s;), with lower values indicating greater sequence diversity.

HCDR3 Pairwise Sequence Similarity

AbsciGen 1.0
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Supplementary Figure 9. Pairwise HCDR3 sequence similarity matrices, grouped by target.
Each pixel shows the PSS score between two sequences generated for the same target
(red = high similarity/low diversity, blue = low similarity/high diversity) from our in silico
benchmark analysis. A single generated sequence was randomly selected for every
generated structure, resulting in 102x102 sequence comparisons per target. Sequences
are hierarchically clustered within each target block. RFantibody (left) shows more diverse
outputs, while AbsciGen (right) generates more similar sequences within each structure.
However, both methods achieve high diversity at the target level due to varied backbone
generation, as summarized in Supplementary Table 2.

Supplementary Table 2 reveals that AbsciGen exhibits low sequence diversity for a given
structure: only 48% of generated HCDR3 sequences are unigue (compared to 89% for
RFantibody), with a PSS of 0.92 indicating near-identical outputs within each structure. This
suggests that AbsciGen’s sequence design module produces limited variation when
conditioned on a particular backbone conformation. At the target level, however, both
methods achieve 100% unique sequences, indicating that AbsciGen’s generated structures
provide sufficient diversity in the context of the full pipeline. In this setting, RFantibody
maintains lower PSS (0.21vs. 0.46), indicating greater sequence diversity.
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Structure-level Target-level

Frac Unique T PSS Frac Unique T PSS
RFantibody 0.90 £ 0.01* 0.74 £ 0.01* 1.00+0.00 0.20 £ 0.01*
AbsciGen 0.49+£0.03 0.92+0.00 1.00+0.00 0.46 + 0.01

Supplementary Table 2. HCDR3 sequence diversity metrics. Fraction of unique sequences
and pairwise sequence similarity (PSS) computed at structure-level (within each structure)
and target-level (pooled across all structures per target). Metrics computed across 4
targets, reported as mean * standard deviation. Best values for each metric are highlighted
in bold. * indicates p < 0.05 by Mann-Whitney U.
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Supplementary Figure 10. Top generated HCDR3 sequences (n = 8) across target, epitope,
and CDR-length design specifications per AbsciGen. Configurations were selected based
on the highest median ipTM score for each pipeline. Each row shows sequences for the
design configuration that achieved the best performance for each method. Configurations
producing high scoring samples by AbsciGen are in many cases not found to score highly
under RFantibody. Top samples ranked by RFantibody are shown in Supplementary Figure 11.
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Supplementary Figure 11. Top generated HCDR3 samples (n = 8) of target, CDR-length, and
epitope design configurations by median ipTM as ranked by RFantibody. Despite ranking by
samples of top configurations under RFantibody, AbsciGen often scores competitively.

7.4.4 Structural Diversity

To qguantify structural diversity, we compute pairwise backbone RMSD (N, Ca,C,0 atoms)
within groups of comparable design configurations that share the same antigen target, CDR
lengths, and framework lengths. In our benchmarking, we identified over 500 groups of
comparable designs for both pipelines, with each group containing up to 48 members with
identical topology. We report two complementary metrics, averaging over all valid groups
and pairs of group members.

Self-Aligned RMSD

As reported in Supplementary Table 3, this metric measures conformational diversity by
optimally superimposing the target region (HCDR3, LCDR3, or full antibody Fv) onto itself
using the Kabsch algorithm [60] before computing RMSD. This captures the range of loop
conformations sampled by each method, independent of global orientation.
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Antibody RMSD (A)T  HCDR3 RMSD (A) 1 LCDR3 RMSD (A) 1

AbsciGen 2.72+122 1.09+0.22 0.78 £ 0.31

RFantibody 4.83+0.69* 1.57+0.23 1.26 +£ 0.15*

Supplementary Table 3. Self-aligned structural diversity. Pairwise backbone RMSD computed
after aligning each region onto itself, measuring conformational diversity independent of
global orientation. Metrics are computed across all four unsupervised targets, reported as
mean * standard deviation. Best values in bold. * indicates p < 0.001 by Mann-Whitney U.

Antigen-Aligned RMSD

As reported in Supplementary Table 4, this metric measures binding pose diversity by first
superimposing structures using the antigen backbone, then computing region RMSD
without additional alignment. This captures how diversely each method positions CDR loops
relative to the epitope—a metric more relevant to functional diversity in antigen recognition.
RFantibody generates greater self-aligned and antigen aligned structural diversity than
AbsciGen across all measured regions, although the differences are only statistically
significant for self-aligned antibody and HCDR3 RMSD.

Antibody RMSD (A)*  HCDR3 RMSD (A) 1 LCDR3 RMSD (A) 1
AbsciGen 6.66 + 2.21 418170 451:166
RFantibody 8.16:1.77 5.06 * 1.67 5.75 £ 1.60

Supplementary Table 4. Antigen-aligned structural diversity. Pairwise backbone RMSD was
computed after superimposing structures on the antigen backbone, measuring binding
pose diversity in CDR loop positioning relative to the epitope. Metrics computed across four
targets, reported as mean * standard deviation. Best values highlighted in bold. No
differences were determined to be significant by Mann-Whitney U.
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Structural Diversity by Region: RFantibody vs AbsciGen
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Supplementary Figure 12. Self-aligned structural diversity comparison. Pairwise backbone
RMSD (N, Ca, C,0 atoms) was computed within groups of comparable antibody structures
sharing the same antigen target, CDR lengths, and framework lengths. Each region was
optimally superimposed onto itself using the Kabsch algorithm before computing RMSD,
measuring conformational diversity independent of global orientation. (Top) Boxplots show
the distribution of mean pairwise RMSD across comparable groups for antibody Fv, HCDR3,
and LCDR3 regions. Individual points represent comparable groups (n = 512 per method).
(Middle) Kernel density estimates showing the full distribution of RMSD values. (Bottom)
Mean RMSD per antigen target, showing consistent trends across diverse antigens.
RFantibody (black) exhibits greater structural diversity than AbsciGen (red) across all
regions and targets.
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7.5 AbsciBind Extended Methodology

Effectively scoring and ranking designs is fundamental to the success and scalability of an
Al pipeline for antibody design. While folding models have shown strong performance for
scoring and filtering general protein binder designs, their potential to translate for antibodies
remains unclear, given reports of limited accuracy for antibody-antigen complex prediction
[33,34].

We curate a protocol, AbsciBind, as a scoring method for antibody-antigen complexes,
leveraging the advantages of existing folding approaches and identifying workarounds to
their limitations. Folding algorithms such as AlphaFold (AF) [7] and AlphaFold-Multimer
(AFM) [30] take protein sequences, structural templates from homologs, and multiple
sequence alignments (MSAs) as inputs. For AF and AFM, templates are encoded by amino-
acid identity, CpB distance matrices, and backbone torsion angles. Prior work demonstrated
that AFM confidence metrics can be repurposed to score candidate (“decoy”) structures
by either “disguising” the decoy as the model’s output from a previous (fictitious) recycling
iteration and feeding it back through the network, in the style of AlphaFold-Multimer Initial
Guess (AFM-IG) [61], or supplying the decoy as a template, using empty MSAs, masking side
chains except for the CB atom, adding “virtual” Cg atoms for glycine residues, and replacing
template residues with gap symbols. The latter approach, known as AF2Rank [62], achieves
strong decoy ranking performance on single-chain proteins. Although AFM masks inter-
chain CB distances during training and inference, exposing these distances via minor
inference-time modifications enables the model to leverage cross-chain template
information without retraining, as demonstrated by the AF_Unmasked method [45].
Motivated by this result, we attempted to apply AF2Rank with cross-chain templates to
antibody-antigen complexes, but our results showed that this approach yielded high false-
negative rates (Supplementary Figure 13), with correct docked poses often not preservedin
AF2Rank outputs. We attribute this failure to masking template amino-acid tokens, which
causes the model to ignore critical information from antibody-antigen complex templates.

This observation inspired us to implement several adjustments to the native AFM protocol:
we provide the amino acid sequence of an antibody-antigen complex as the input; we
supply the designed or decoy structure as a multimer template; we retain template amino-
acid tokens instead of replacing them with gap symbols; we mask all template side chains
except for the CB atoms; we disable AFM’s default masking of inter-chain template
distances; and we use single-sequence mode. To ensure deterministic inference, we
disable dropout and Evoformer residue masking. We call this updated protocol AbsciBind.

To assess the impact of implementing these changes prior to utilizing the AbsciBind
protocol to select AbsciGen designs as part of the Origin-1pipeline, we tested the AbsciBind
protocol, AFM-IG, and AF2Rank’s abilities to recover native antibody-antigen poses by
deploying these models on a set of antibody-antigen complexes released after the training
cutoff for AFM v2.3. We found that while AFM-IG and AF2Rank (with cross-chain templates)
often failed to recover the native poses, our AbsciBind protocol succeeded (Supplementary
Figure 13). We identified one AFM v2.3 model checkpoint (model 2 multimer v3) that best
recapitulated experimental antibody-antigen complexes in the PDB when used in our
AbsciBind pipeline (Supplementary Figure 14). These results motivated us to proceed with
AbsciBind as our primary protocol for establishing an antibody design scoring method.
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Filtering

Consistent with the logic underlying computational filtering methods that rely on folding
methodologies for protein design quality assessments, we assumed that AbsciGen designs
should be discarded if the 3D structure predicted by the AbsciBind protocol deviated
substantially in tertiary and/or quaternary structure from the AbsciGen structure provided
as a template input. To this end, we computed structural consistency scores that quantified
the similarity between the designed and predicted complexes and used these scores to
filter our designs. Specifically, we first merged the heavy and light antibody chains into a
single Chain A, and all antigen chains into a separate Chain B. We then computed the ligand
root mean square deviation (L-RMSD) as follows: (1) the ligand and receptor were
respectively defined as the shorter and longer of Chains A vs. B; (2) all non-backbone atoms
were removed from both the designed and predicted complexes; (3) the rigid-body
transformation that minimized the RMSD between the receptor chains was computed; and
(4) the L-RMSD was defined as the RMSD between the ligand chains after applying this
transformation. Any prediction with an L-RMSD greater than 5 A relative to the designed
complex was discarded.

AbsciBind Protocol ipTM Score

AFM’s interface-predicted TM (ipTM) score [30] measures the model’'s confidence on the
global packing of a protein complex. In applying the ipTM score to the antibody-antigen
problem, the value of this score is also influenced by the model’s confidence in the relative
arrangement between heavy and light antibody chains, as well as between antigen chains if
several are present. To reduce the weight of contributions to ipTM coming from intra-
antibody or intra-antigen residue pairs, we first merged the antibody heavy and light chains
into a single chain Ab of length L,,, and all antigen chains into a single chain Ag of length Ly,.
Then, ipTM for this fictitious dimer can be expressed as

ipTM = max[ipTMp (Ag;: Lioo), iPTMpg(Ab; Ligy)]

where Ly = Lap + Lag iS the total number of amino acids in the complex and, for any two
chains 4, B in a complex and any L > 0, we define

1
572 Py (L)

j€B

ipTM,(B; L) = max

where

1 b-0.5

pTMy; (L) = X5, i - —
1+(d0(L))

The probabilities pib]- are outputted by AFM and satisfy ¥5%, pf’j = 1. The normalization factor is
defined as,
_(1.24(L—-15%Y3—-18, L=19
d"’(L)_{L L<19°
Because the normalization factor dy(Ly) depends on the antibody length in the original
formulation of ipTM, the relative ranking of designs targeting the same antigen but with
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different CDR lengths can be systematically affected. To mitigate this effect, we introduce
an Antibody-Aligned ipTM, defined as:

ipTM,y, (Ag; LAg)'

Related one-way alignment scores and similar modifications to the normalization factor d,
were previously introduced in [63].

In silico Benchmarking of the AbsciBind Protocol

To assess the AbsciBind protocol’s appropriateness for scoring and selecting AbsciGen
designs, we tested AbsciBind’s ability to discriminate true binders from non-binders in an
experimental set of eight antibody-antigen systems [21, 46]. We compared the AbsciBind
protocol’'s performance with the performance of six established reference approaches
(GeoFlow-V3, Geoflow-V2, AFM-IG, Protenix, Boltz-2, and Chai-1) [27].

Results showed that AbsciBind achieves the strongest average binder-non-binder
discrimination performance as measured by AUROC (Figure 5), using the maximum ipTM
score across all five AFM v2.3 model checkpoints. Consistent with the prior observation that
model 2 multimer v3 (model 2) checkpoint accurately recapitulates ground-truth PDB
structures, we find that this “Selected AbsciBind ipTM” score (model 2 only) closely tracks
“Best AbsciBind ipTM” score (best from all 5 models) across targets. In several cases,
including ACVR2B, TSLP, IL36R, and C5, the Selected score achieved nearly identical, and in
one case higher, AUROC values compared with the Best ipTM score. Importantly, using only
model 2 yields an approximately 80% reduction in runtime compared with evaluating
designs with all five models. Given this substantial runtime reduction and the strong
classification performance, model 2 was selected to support the AbsciBind protocol for the
remainder of the present effort.

We defined a final AbsciBind Score as the arithmetic mean of the default AbsciBind protocol
ipTM score (computed over all antibody and antigen chains and interfaces) and the
Antibody-Aligned ipTM score. We design this metric to integrate a global interface score
with an antibody-aligned, consistently normalized assessment of the antibody-antigen
interface’s quality and use this score to evaluate AbsciGen designs for de novo library design
(§82.4.3) and to select mutant variants for lead optimization efforts (§2.4.4).
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Supplementary Figure 13. Distribution of DockQ and ipTM scores for AlphaFold-Multimer
(AFM) predictions generated using the initial-guess (AFM-IG), AF2Rank, and AbsciBind
protocols. Colors and markers indicate the protocol used. The gray dashed line at 'y = 0.23
marks the CAPRI threshold separating incorrect from acceptable predictions based on
DockQ. DockQ scores are computed by comparing the merged antibody heavy-light chains
against the antigen chain. All complexes were released after the AFM v2.3 training cutoff
date (2021-09-30) and are non-redundant with respect to antigen sequences at a 40%
seguence similarity threshold.
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Supplementary Figure 14. Distribution of L-RMSD values for SAbDAb-generated structures.
The left panel shows the histogram of scores, while the right panel shows the cumulative
distribution function (CDF), indicating the fraction of structures below a given L-RMSD
threshold. Notably, 85% of generated structures fall below an L-RMSD threshold of 5 A, while

90% fall below 10 A.

7.6 Library Design

7.6.1 Structure and Sequence Search Strategy
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Supplementary Figure 15. Schematic illustrating inference-time search strategy involving
progression through Wide Structure Search, to identify optimal design specifications, Deep
Structure Search, to select top backbone structures, and Sequence Search, to select top
sequences per backbone structure for experimental validation.
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Supplementary Figure 16. Concentrating compute resources on high-confidence designs
within defined search windows improves quality of top designs as assessed by AbsciBind
Score. Solid line represents the mean (across multiple targets) of the top score within each
target. Shaded areas represent 90% confidence interval.

Wide Structure Search

The first structure design step aimed to identify the design specifications (formatted as
tuples of FWRs, CDR lengths, and epitope residue samples) that yielded structure-sequence
pairs with the highest Antibody-Aligned ipTM Scores. 3360 combinations of design inputs
were sampled and provided as inputs to AbsciDiff. AbsciDiff was run with M = 24 diffusion
samples per trunk sample and K = 3 selected samples out of M diffusion samples, resulting
in 3360 - M = 80640 generated structure samples and 3360 - K = 10080 selected structure
samples. IgDesign2 generated one top sequence per structure, and each structure-
sequence pair was scored using AbsciBind.

Of these 10080 structures, we selected the top 5% of design strategies by maximum
Antibody-Aligned ipTM Score (across the three structures) and the top 5% by median
Antibody-Aligned ipTM Score (across the three structures) for a total of 1008 design
strategies (with some redundancy, where the max and median overlap). These design
strategies (config files) were then oversampled at a rate of 10X, providing a total of 10080
design specifications for Deep Structure Search, with either ten or twenty repeats of each
design specification. We evaluated this approach against alternative filtering strategies of
using the top 4%, 7%, or 10% of configs by the maximum + median strategy described above
and found that the current method performed favorably for maximizing Antibody-Aligned
ipTM Score.
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Deep Structure Search

Following Wide Structure Search, we executed a second structure design step, Deep
Structure Search, to exploit the favorable configurations identified through Wide Structure
Search and comprehensively sample the accessible structure space within each design
specification.

During Deep Structure Search, AbsciDiff, IgDesign2, and AbsciBind were run with
parameters identical to those used during Wide Structure Search, resulting in 10080 - M =
241920 generated structure samples and 30240 selected/scored structure samples with
one sequence selected per structure.

All 30240 structure-sequence pairs produced during Deep Structure Search were pooled
with the 10080 structure-sequence pairs from Wide Structure Search for a total of 40320
structures. Designs were then filtered to remove those for which the L-RMSD
(Supplementary Table 6) between the AbsciBind protocol-predicted structure and the
AbsciDiff-designed structure exceeded 5 A. Out of the top 10000 remaining structures by
Antibody-Aligned ipTM Score, 500 structures were advanced to Sequence Search (see
below). The first 25% of structures were selected by highest Antibody-Aligned ipTM Score.
The remaining 75% of structures were selected by minimum Intersection Score
(Supplementary Table 6). The rationale behind leveraging multiple selection strategies was
to ensure inclusion of designs that prioritize both recall, by selecting structures scored highly
by Antibody-Aligned ipTM Score (first 25% selection), and precision, by selecting structures
scored highly by both Antibody-Aligned ipTM Score and AbsciBind ipTM score (last 75%
selection). To ensure structural diversity among this selection, structures were clustered via
agglomerative clustering using the antigen-aligned-conserved-residue-RMSD metric
(Supplementary Table 6) with a distance threshold of 10 A. The percent of structures
selected from a single structural cluster was limited to 30% during implementation of the
25%/75% selection strategy.

Sequence Search

Seqguence Search searches for top-scoring sequences for the top backbone structures
identified through Wide Structure Search and Deep Structure Search. 320 sequences were
sampled from IgDesign2 for each of the 500 selected structures. These sequences were
filtered to remove sequences with “critical” liabilities (Supplementary Table 7) and
deduplicated. The top twenty sequences per structure, as ranked by IgDesign2 pseudo-
perplexity (Supplementary Table 6), were scored with the AbsciBind protocol (using their
reference structure as a template) and considered for final selection.

For final selection, sequences from Wide and Deep Structure Search were pooled with
designs from Sequence Search. Any sequence with an L-RMSD between the design
structure vs. AbsciBind-folded structure of greater than 5 A was removed. For each
structure, the top sequence was selected by Intersection Score. The top 95
structure/sequence pairs were then selected by AbsciBind Score (Supplementary Table 6),
restricting the number of “Other” sequence liabilities permissible (Supplementary Table 7).
Additional criteria were imposed to promote design diversity: the permitted number of
replicates of each unigue HCDR3 sequence was restricted to three; the number of
replicates of each unique (HCDR3 sequence, cdr lengths) pair was capped at one (where
cdr_lengthsis an ordered list of CDR lengths); and the permitted proportion of sequences
from a single structural cluster was capped at 30%.

51



7.6.2 CDR length distributions used to guide antibody design

HCDR3 LCDR1 LCDR3

Length Rate Length Rate Length Rate
8 0.02 6 0.55 8 0.10
9 0.04 7 0.15 9 0.60
10 0.06 8 0.10 10 0.15
1 0.08 9 0.10 1 0.10
12 0.10 10 0.05 12 0.05
13 0.10 1 0.05

14 0.10

15 0.10

16 0.08

17 0.06

18 0.06

19 0.04

20 0.04

21 0.04

22 0.02

23 0.02

24 0.02

25 0.01

26 0.01

Supplementary Table 5. Normalized distributions of HCDR3, LCDR1, and LCDR3 lengths from
AbData. Lengths for individual CDRs were sampled independently from these distributions.
Length = CDR length; Rate = normalized rate of occurrence in AbData.
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7.6.3 Metrics used to Score AbsciGen Designs

Metric

Description

Search Stage(s)

Antibody-Aligned
ipTM Score

A custom asymmetric ipTM score that merges all
antibody chains and all antigen chains so that only
antibody-antigen interactions are considered.

Wide Structure Search,

Deep Structure Search
Seguence Search

)

AbsciBind ipTM
Score

Interface-predicted template modeling (ipTM)
score from the AbsciBind protocol.

Deep Structure Search
Seguence Search

)

AbsciBind Score

Average of Antibody-Aligned ipTM Score and
AbscBind ipTM Score.

Seguence Search

Intersection

A design’s minimum rank when comparing its

Deep Structure Search

)

Score Antibody-Aligned ipTM Score and AbsciBind ipTM Seguence Search
scores, defined as: min(rank(complexes,
“AbsciBind ipTM Score”), rank(complexes,
“Antibody-Aligned ipTM Score”)).
Ligand RMSD The substrate-aligned root mean square deviation  Deep Structure Search,
(L-RMSD) of atomic positions for the ligand between two Seqguence Search

complexes

Antigen-aligned
conserved
residue RMSD

The antigen-aligned root mean square deviation of

residue positions which are structurally conserved
across antibody frameworks. These positions are
Chothia [64] scheme IDs 36-39 and 89-92 on the
heavy chain and scheme IDs 35-38 and 85-88 on
the light chain. Complexes are aligned on the
antigen via the Kabsch algorithm [60]. RMSD is
then calculated across these conserved positions.

Deep Structure Search
Seguence Search

)

IgDesign2
pseudo-
perplexity

The perplexity of the sequence under the
IgDesign?2 logits.

Seguence Search

Supplementary Table 6. List of metrics used to evaluate Origin-1 generated structures and
sequences.
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7.6.4 Sequence liabilities considered in antibody design

Sequence Liability Category

N-Glycosylation - The motif NXS or NXT with X any residue other than proline  Critical

3-W - Five consecutive tryptophan residues in a single CDR. Critical
4-G - Four consecutive glycine residues in a single CDR. Critical
5-Y - Five consecutive tyrosine residues in a single CDR. Critical
5-S - Five consecutive serine residues in a single CDR. Critical
3-G - Three consecutive glycine residues in a single CDR. Other (4 max)
3-S - Three consecutive serine residues in a single CDR. Other (13 max)
4-S - Four consecutive serine residues in a single CDR. Other (3 max)

Supplementary Table 7. List of sequence liabilities considered while designing Origin-1
libraries for in vitro experimentation.

7.7 Lead Optimization

Variant Scoring

We computed the masked marginal (MM) likelihood of a mutant sequence as a fitness score
for the protein language models, as this approach has been shown in benchmarking tasks
to perform well with a low computational requirement, especially for single-mutants [56].
We calculated the difference between AbsciBind Scores associated with the parent relative
to the mutant and used this difference as the fitness score from the AbsciBind protocol.

Variant Selection

Mutable positions on both heavy and light chain included the CDRs, structure-inferred
paratope residues (defined as those within 5 A of the antigen using the AbsciBind predicted
structure). Additional mutable positions are included in FWR2 and FWR3, excluding selected
conserved motifs. All possible single-mutants were generated for the defined mutable
positions and scored with the ESM ensemble [55-57], AbLang?2 [58], and the AbsciBind
protocol as fitness models, along with the Therapeutic Antibody Profiler (TAP) [65] and
BioPhi [47] to assess in silico developability and humanness. Mutant sequences that
introduce chemical liabilities (e.g. N-glycosylation motifs) were also excluded.

Library Creation

We selected 94 single-mutant variants per de novo binder. To generate these libraries, we
first included an alanine scan of all structurally inferred paratope residues, all human
germline reversions, and any positions with improved fitness by both AbsciBind and a
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sequence model (either of ESM-ensemble, or AbLang2). For the ESM ensemble, improved
fitness was defined as a median score of > 0.0 across all component models. We
subsequently selected the highest-scoring (by AbsciBind Score) structural mutants,
allowing up to four mutants per CDR/paratope position and two mutants per mutable
framework position. The remaining library budget was filled with sequence mutants (by ESM
ensemble only) allowing no more than two mutants per CDR/paratope position and one
mutant per framework position. Fitness thresholds and positional budgets were adjusted
per design as necessary to fit the library budget, maintain balance across categories, and
ensure positional diversity. Supplementary Table 8 shows the categorical breakdown of
variants selected by method in each library. We measure the binding affinity of library
variants by SPR using the protocol described in Supplement §7.8.2.

Selection Method COL6A3 CHI3L2 AZGP1 IL36RA
Alanine scan 20 25 23 31
Germline reversion 6 8 19 14
Structural alone 27 4 17 28
Sequence alone 41 13 33 20
Structural + Sequence 0 7 2 1

N Total Mutants 94 94 94 94
Mutation Positions (HC:LC) 70:24 48:46 49:45 40:54

Supplementary Table 8. Count of single-mutants ordered by selection method for the
binders identified for further lead optimization. Each 96 well plate includes the parent
seqguence in the order and a negative binding control mAb is added during processing for
SPR. HC =Heavy Chain; LC = Light Chain.

7.8 In vitro Methodology

7.8.1 Antibody Production

Up to 95 monoclonal antibodies per target were produced by GenScript (Piscataway, NJ,
USA) using a Chinese hamster ovary (CHO) cell-based expression system at a ImL culture
volume scale. Antibodies were purified from culture supernatants utilizing protein A
magnetic beads and supplied in a buffer containing sodium acetate, 0.2M L-arginine, at pH
5.5. Final antibody concentrations ranged from 2.6mg/mL to 0.05 mg/mL. Endotoxin levels
were confirmed to be below 0.020 EU/mg for all samples. For hit validation studies, selected
antibody sequences were expressed as Fabs by GenScript using a CHO-based system at a
30mL culture volume scale and as mAbs by WuXi Biologics (Wuxi, Jiangsu, China) using a
CHO-based system at a 20mL culture volume scale. For mAbs produced by WuXi Biologics,
purification was performed from culture supernatants via protein A affinity chromatography,
and antibodies were formulated in sodium acetate buffer containing 20 mM histidine, 150
mM NaCl, at pH 5.5. In certain cases, formulations were further supplemented with 150 mM
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arginine and 60 mM succinic acid. Antibody concentrations ranged from 10 mg/mL to 0.15
mg/mL, and endotoxin levels were maintained below 0.020 EU/mg for all samples.

7.8.2 Surface Plasmon Resonance (SPR)
Binding by SPR was assessed using LSA*T instruments (Carterra, Salt Lake City, UT).

Primary Hit Screening

Binding was assessed against intended targets and off-target proteins to assess binding
specificity. Antigens were buffer-exchanged using Zeba Desalting Spin Columns
(ThermoFisher, Cat. No. 89890) and transferred into 96 deep-well plates at a starting
concentration of 2uM, then serially diluted 4-fold for 6 steps in 1x HBSTE-BSA assay buffer
(10 mM HEPES pH 7.4, 150mM NaCl, 3mM EDTA, 0.05% Tween-20 + 0.5g/L BSA). Target-
designed mADbs, off-target mAbs, and four framework controls were immobilized onto a
SAHC30M chip (Carterra, Cat. No. 4294) coated with 20ug/mL CaptureSelect Biotinylated
Anti-IgG Human Fc antibody (ThermoFisher, 7103262100). Samples were immobilized for
ten minutes in Ix HBSTE assay buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3mM EDTA, 0.05%
Tween-20) on the chip, followed by a five-minute injection of antigen, and ten-minute
injection of 1x HBSTE-BSA assay buffer to measure rate of association (kon) and dissociation
(kotf) between antigen and antibody. Each antibody-antigen pair was run in duplicate, with
antibodies re-immobilized on the sensor chip surface between prints with a 2 x 120 second
regeneration injection of 10mM Glycine HCI pH 2.0 (Carterra, Cat. No. 3640). Kinetics analysis
software (v2.0, Carterra) was used to analyze datasets.

Sensorgrams with signal output of Response Units (RU) <5 were automatically excluded by
Kinetics software, and further exclusions were made manually for sensorgrams with signal
<10 RU. For any sensorgram to be further evaluated, signal for the 2 uM concentration must
have been > 10 RU with signal (> 5 RU) in at least the second-highest concentration (500 nM).
Sensorgrams were then visually inspected for curvature, convergence and dissociation
according to evaluation criteria as part of standard analysis. Data from on-target and off-
target SPR runs were cross-analyzed to determine antibody-antigen binding specificity as
well as non-specific mAb interactions, which could be determined by both sensorgram
quality and frequency of overall non-specific binding events. Sensorgrams depicting high
degrees of linearity in both the association and dissociation phases, as well as characteristic
slow kon and kot were determined to be non-specific. By contrast, true hit sensorgrams
displayed curvature in both the association and dissociation phases, with faster kon and Kor.
To be considered a true hit, a design must have also bound specifically to the target it was
designed for and show a lack of binding to off-targets.

Lead Optimization Screening

For lead optimization libraries, antibody and antigen concentrations were adjusted to bring
signal in range for affinity measurement. Antibodies designed against COL6A3 were
immobilized at 0.5 ug/mL and assessed against a dilution series of COL6A3 starting at 2 uM
and serially diluted 3-fold in 1x HBSTE-BSA assay buffer (10 mM HEPES pH 7.4, 150 mM NaCl,
3 mM EDTA, 0.05% Tween-20 + 0.5 g/L BSA) for six dilution points. Antibodies designed
against AZGP1, CHI3L2, and IL36RA were immobilized at 1 yg/mL and assessed against a
dilution series of their respective antigens starting at 2 uM and serially diluted 2-fold in 1x
HBSTE-BSA assay buffer for six dilution points. During kinetic analysis of the COL6A3
antibody designs, affinity was calculated after cropping sensorgrams to 375 seconds due to
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biphasic binding responses. For lead optimization libraries, data were fit to a 1.1 Langmuir

model to calculate affinity.

We report binding affinities for top designs (referred to as parent designs) and optimized
variants in Supplementary Figure 17. The full set of binding affinities can be found here.
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Supplementary Figure 17. Per-target SPR sensorgrams including measured binding affinities
for Origin-1 parent and optimized variant designs. (A) Left: Parent design against COL6A3
binds to COL6A3. Right: Binding affinity is measured from cropped SPR sensorgram
reflecting binding of COL6A3 Parent Design against COL6A3. * indicates that binding affinity
is computed from cropped sensorgram (B) Parent design against AZGP1 binds to AZGP1.
(C) Left: Parent design against CHI3L2 binds with micromolar affinity. One round of Al-based
affinity maturation leveraging AbsciBind improves binding affinity by approximately 4X
(Middle) and 2X (Right). (D) Left: Parent design against IL36RA binds to IL36RA with
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micromolar affinity. One round of Al-based affinity maturation leveraging AbsciBind
improves binding affinity by approximately 68X (Middle) and 26X (Right).

7.8.3 Biolayer Interferometry (BLI)

A BLI kinetics assay was used to confirm binding results that were observed upstream by
SPR. The Gator® label-free bioanalysis system, which includes the Gator® Prime instrument,
biosensor probes, and a computer with integrated software, was used to measure the
binding kinetics between antibodies and antigens. All steps in the instrument were
performed at 25 °C and an orbital shaking speed of 1,000 RPM. All reagents were formulated
in 1x HBSTE-BSA (1x 10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% Tween 20, 0.5
mg/mL BSA) assay buffer. All sensors were rehydrated in buffer for a minimum of ten
minutes before beginning the assay. Prior to each kinetic measurement, the Anti-Human
Fab (Gator; Cat. No. 160013) biosensor probes were dipped into the assay buffer for 60
seconds to establish a baseline. For kinetics measurement, 5 ug/mL of each antibody was
immobilized onto the biosensor probes for 120 seconds. Following antibody immobilization,
the biosensor probes were dipped into the assay buffer for 60 seconds to assess baseline
drift and evaluate the antibody loading level. Subsequently, the probes were exposed to
serially diluted antigen solutions (ranging from 2000 nM to 31.25 nM in 2-fold dilutions) for five
minutes to monitor real-time association kinetics. This was followed by a ten-minute
dissociation phase, during which the probes were transferred to antigen-free assay buffer
(HBSTE-BSA) to assess the rate of antibody-antigen complex dissociation from the
biosensor surface. Kinetic data were analyzed using the GatorOne analysis software (v2.17.7,
Gator Bio). Quality of fit was assessed by using the value of R? > 0.95 with manual inspection
of sensorgram curvature. Kinetics sensorgrams were plotted in GraphPad Prism 10.0.

7.8.4 Antibody-Antigen Complexation

Antibody binders were reformatted as Fabs and combined with respective antigen at a
1.3:1antigen:Fab molar ratio and purified by Size-Exclusion Chromatography using a
Superdex200 Increase 10/300 column (Cytiva). Chromatograms were normalized and
plotted against Fab/antigen alone to compare differences in retention volume.

We show gels related to complexation chromatograms in Supplementary Figure 18.
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Supplementary Figure 18. SDS-PAGE gels for validated antigen-Fab combinations. (A) SDS-
PAGE gel with lanes corresponding to AZGP1 alone, Fab alone, and selected AZGP1-Fab
complex fractions from chromatogram seen in Figure 10. (B) SDS-PAGE gel with lanes
corresponding to COL6A3 alone, Fab alone, and selected COL6A3-Fab complex fractions
from chromatogram seen in Figure 9. (C) SDS-PAGE gel with lanes corresponding to IL36RA
alone, Fab alone, and selected IL36RA-Fab complex fractions fromn chromatogram seen in
Figure 12. (D) SDS-PAGE gel with lanes corresponding to CHI3L2 alone, Fab alone, and
selected CHI3L2-Fab complex fractions from chromatogram seen in Figure 11.

7.8.5 Developability Assessments

Antibody Quality Assessment

Antibody quality assessments were performed by SEC, non-reduced CGE (NR-CGE) or
Microchip-CGE (MCGE), and intact mass spectrometry. Concentration of mAbs was
determined by A280 using the SoloVPE instrument (CTech™) and each antibody’s
calculated extinction coefficient [66]. Aggregation determination by SEC was performed
using HPLC 1260 Infinity Il (Agilent) with mobile phase 1XPBS, pH 7.4 and separation was done
on a 30 cm TSKgel UP-SW2000 (Tosoh) column. Fragmentation evaluation by NR-CGE was
performed using CESI 8000 Plus (Sciex) with a high-speed setup method for separation.
Alternatively, for high-throughput analysis, fragmentation was performed by MCGE using a
LabChip GX Touch HT (Revity) and the protein express reagent kit (Revity). Confirmation of
identity was done by intact mass spectrometry using a reversed phase HPLC 1290 Infinity I
(Agilent) connected to a TripleTOF 6600+ MS System (Sciex). Intact mass data analysis was
performed using PMI-Byos software v4.5-53 (Protein Metrics). All assays contained a system
suitability check in each run or plate as determined by the performance of trastuzumalb
(SEC,NR-CGE, MCGE), BSAA standard (concentration of mAbs) or NIST mAb (intact mass).

59



Antibody Developability Assays

Particle size and thermal stability of the antibodies were performed by dynamic light
scattering (DLS) and nano differential scanning fluorimetry (nanoDSF) using Prometheus
Panta instrument (NanoTemper). DLS measurements were acquired at 25°C under high
sensitivity mode. Thermal unfolding profiles were subsequently recorded from 25°C to 90°C
with a temperature ramp of 0.5°C per minute. Data was processed and analyzed using
Prometheus Panta software version 1.1.

Antibody self-association, polyreactivity, and hydrophobicity were analyzed using affinity
capture self-interaction nanoparticle spectroscopy (AC-SINS), ELISA-based assays, and
hydrophobic interaction chromatography (HIC), respectively. AC-SINS was performed
according to the method reported before [67]. Polyreactivity was assessed as anti-DNA and
anti-insulin ELISAs according to procedure described previously [68]. Data reporting for
polyreactivity was performed in a novel manner to account for plate-to-plate variability and
the four dilution levels used in the study. Molecules were run at 0.08, 0.4, 2.0 and 10.0 pg/mL
againstimmobilized DNA or Insulin, with the resulting absorbance values divided by the value
of the blank (buffer) for a score. This score was then normalized for each dilution level using
the maximum value on the plate (rescored 11) and blank value on the plate (rescored 1) to
reduce plate to plate variability affecting scoring. These normalized scores were then added
for all four dilution levels for a Range Normalized Summation (RNS) reported as the total
polyreactivity result. HIC analyses were performed according to a procedure detailed in Jain
et al. [69]. HIC reporting was done as relative retention time compared to trastuzumab
(Sample retention time/trastuzumab retention time) All the assays were evaluated for
system suitability checks in each run or plate as determined by the performance of a
negative control, trastuzumab for all assays, and at least one positive control such as
Infliximalb for AC-SINS, Bococizumab and Briakinumalb for polyreactivity, or BSA and Insulin
for HIC. For DLS and nanoDSF, standard particles solution and lysozyme standard were used
for system suitability checks in each run, respectively.

7.8.6 Cryogenic Electron Microscopy (Cryo-EM)

Data Acquisition

For the AZGP1-Design complex, fractions purified as described above were combined
and concentrated down to1 mg/mL before snap freezing.For the COL6A3-Design
complex, fractions purified as described above were combinedat a1:1:1molar ratio
with modified variants of an anti-Kappa VHH (Q5V, Q113K, Q116P; referred to
as Nanodaptor) and NabFab (S123E, Q199R; referred to as Kappabulk). Relevant fractions
were pooled and concentrated down to 4.5mg/mL before snap freezing. For cryo-EM grid
preparation, 2.5uL of purified COL6A3-Design-Nanodaptor-Kappabulk and AZGP1-Design
complexes at concentration of 0.5mg/mland 0.4mg/ml, respectively were applied to glow-
discharged Cu 300 mesh holey carbon grids (Quantifoil R1.2/1.3). The grids were blotted and
plunge-frozen in liquid ethane using a Vitrobot Mark IV (ThermoFisher Scientific).

For the AZGP1-Design complex dataset, 9687 movies were collected on a
Titan Krios transmission electron microscope operated at 300kV and equipped with a
Falcon4i direct electron detection detector. Data were acquired at a nominal magnification
of 130,000, corresponding to a calibrated pixel size of 0.932 A. Each movie consisted of 40
frames resulting in a total accumulated electron dose of approximately 49 e/A?,
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For the COLG6A3-Design complex dataset, 9502 movies were collected on a
Titan Krios transmission electron microscope operated at 300 kV and equipped with a K3
direct electron detection detector. Data were acquired at a nominal magnification of
105,000, corresponding to a calibrated pixel size of 0.824 A. Each movie consisted of 40
frames resulting in a total accumulated electron dose of approximately 48 e/A?.

Image Processing and 3D Reconstruction

Movie stacks were motion-corrected and dose-fractionated at the micrograph level using
MotionCor2 [70] to correct for beam-induced motion and stage drift. Non-dose-weighted
micrographs were used for contrast transfer function (CTF) estimation with CTFFIND
[71]. Subseqguent data processing was performed using RELION 4.0 [72].

For the AZGP1-Design complex, 5.8 million particles were auto-picked and subject to
multiple rounds of 2D classification. Following 2D classification, approximately 2.0 million
particles were selected for ab initio reconstruction. From five resulting 3D classes, one
class comprising 435,000 particles was subjected to 3D refinement, CTF
refinement, Bayesian polishing, and post processing. The final reconstruction reached a
global resolution of 3.1 A, as determined by the gold-standard Fourier shell correlation (FSC)
0.143 criterion (Supplementary Figure 19).

For the COL6A3-Design-Nanodaptor-Kappabulk complex, approximately 4.1 million
particles were auto-picked and subject to several rounds of 2D classification. Following 2D
classification, approximately 1.0 million particles were used for ab initio reconstruction. From
five 3D classes, one class comprising 494,000 particles was selected for 3D refinement, CTF
refinement, Bayesian polishing, and post-processing, yielding a reconstruction with a global
resolution of 3.0 A (FSC 0.143 criterion). To further improve map quality at the binding
interface, a focused local refinement on the COL6A3-Fab region was performed, resulting
in a local resolution of 2.9 A (Supplementary Figure 20).

Model Building and Refinement

The starting model for COL6A3 was derived from PDB:1KTH. The initial atomic model of the
COL6A3 design was generated by automated model building directly from the Fab
sequence using CryFold / CryoAtom [ 73], followed by manual building of missing/incorrect
regions in Coot. The model was completed by iterative rounds of manual model adjustment
in Coot and automated real-space refinement using PHENIX [74].

The starting model for AZGP1 was derived from PDBAT7V. The initial atomic model of the
AZGP1design was generated by autobuilding directly from the Fab sequence using CryFold,
followed by manual building of missing/incorrect regions in Coot. The model was
completed by iterative rounds of manual model adjustment in Coot and automated real-
space refinement using PHENIX.

Structure visualizations in this work were made possible by PyMOL [75] and Mol* [76].
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Supplementary Figure 19. CryoEM processing workflow of AZGP1-Design structure. (A, B)
Representative 2D class averages and 3D classes. (C-F) Global 3D reconstruction, angular
distribution of particle orientations, local resolution estimations and sharpened map. (G)
Gold-standard FSC plots for the AZGP1-Design complex.
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Supplementary Figure 20. CryoEM processing workflow of COL6A3-Design-Anti Kappa VHH-
NabFab structure. (A, B) Representative 2D class averages and 3D classes. (C-E) 3D
reconstruction, local resolution estimations and gold-standard Fourier shell correlation
(FSC) plots for the COL6A3 complex global map. (F-H) Locally refined 3D reconstruction
map, local resolution estimations and gold-standard FSC plots for the COL6A3-Design
region.

7.8.7 Functional Assessment

Testing Functional Activity of Identified IL36RA Binders

The IL36 cytokine axis is a tightly regulated inflammatory signaling pathway in which the
agonist ligands IL36q, IL36B, and IL36y trigger IL36 receptor activation and downstream
MAPK and NF-kB signaling [49]. In physiological settings, this response is restrained by
IL36RA, an endogenous receptor antagonist that competes with agonist ligands and
suppresses signaling output.
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To functionally characterize antibodies directed against IL36RA, we used a reporter-based
system in which IL36 receptor signaling is converted into a quantitative, secreted readout.
In HEKBIluelL36 cells, activation of AP1and NF-«xB drives expression of secreted embryonic
alkaline phosphatase (SEAP), enabling pathway activity to be monitored directly in cell
culture supernatants using a simple colorimetric assay. In the present study, IL36y is used to
stimulate the pathway, IL36RA is added to impose pharmacologic inhibition, and test
antibodies are evaluated for their ability to neutralize IL36RA activity and thereby restore
IL36y-dependent signaling, as measured by SEAP production.

HEK-Blue-IL36 cells were seeded into 96-well tissue-culture plates at a density of 25,000
cells/wellin the presence of IL36y (2 pM), IL36RA (50 nM), and increasing concentrations of
test antibody. Test antibodies were prepared as threefold serial dilutions spanning 1uM to
1TnM.

Cells were incubated for 24 h at 37°C, 5% COz, under humidified conditions. Following
incubation, 20 uL of conditioned medium was transferred and mixed with 180 pL of
QuantiBlue (InvivoGen) working solution in a clear 96-well plate and incubated at room
temperature for 60 min. Absorbance was measured at 620 nm using a SpectraMax i3x plate
reader. Raw data were processed in Excel, and dose-response curves were fitted by
nonlinear regression using Prism 10 (GraphPad).
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