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Abstract

Traditional antibody optimization approaches involve screening a small subset of the
available sequence space, often resulting in drug candidates with suboptimal binding affinity,
developability or immunogenicity. Based on two distinct antibodies, we demonstrate that
deep contextual language models trained on high-throughput affinity data can quantitatively
predict binding of unseen antibody sequence variants. These variants span a Kp range of
three orders of magnitude over a large mutational space. Our models reveal strong epistatic
effects, which highlight the need for intelligent screening approaches. In addition, we
introduce the modeling of “naturalness”, a metric that scores antibody variants for similarity
to natural immunoglobulins. We show that naturalness is associated with measures of drug
developability and immunogenicity, and that it can be optimized alongside binding affinity
using a genetic algorithm. This approach promises to accelerate and improve antibody
engineering, and may increase the success rate in developing novel antibody and related
drug candidates.
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Introduction

Despite billions of dollars of investment every year, only an estimated 4 % of drug leads
succeed in their journey from discovery to launch [1]. Even worse, only 18 % of drug leads
that pass preclinical trials eventually pass phase I and II trials, suggesting that most drug
candidates are unsafe or ineffective [2]. While much of this failure rate is attributable to
incomplete understanding of the underlying biology and pathology, insufficient drug lead
optimization contributes to a large number of failures |[3].

Traditional antibody screening approaches can only explore small regions of the sequence
space. This may constrain results to sequences with suboptimal properties such as

insufficient binding affinity, developability limitations, and poor immunogenicity profiles [4].

By contrast, deep mutagenesis coupled with screening or selection allows for the exploration
of a larger antibody sequence space, potentially yielding more and better drug leads [5].
However, deep mutagenesis comes with its own challenges. For example, most mutations
degrade the binding affinity of antibodies rather than improve it, which greatly reduces
screening efficiency. Moreover, the size of the antibody sequence variant space grows
exponentially with mutational load (i.e. the number of mutations simultaneously introduced
into each sequence variant) and quickly exceeds the capacity of experimental assays by
orders of magnitude. In addition, most antibody screening approaches are limited to
screening only one property at a time, restricting the simultaneous optimization of drug
potency and developability. Because improving a property may negatively impact others,
simultaneous, rather than sequential, optimization of antibody properties is a preferable
therapeutic strategy [6].

Deep neural networks are an emerging tool that can help overcome the limitations of
experimental screening capacity [7]. The general approach involves training a model on
experimental data and applying it to predict which sequences are most likely to improve the
measured trait. Several promising approaches have been proposed [8H14], but only two
studies have had in silico predictions validated in the lab [15l{16]. While being valuable
demonstrations, previous models are limited by throughput and the use of binary (rather
than continuous) readouts, which can compromise their accuracy at high mutational loads.

In this study, we demonstrate our capability to improve the binding affinity of an
antibody for its target antigen using deep contextual language models and quantitative,
high-throughput experimental binding affinity data. We show that models can
quantitatively predict binding affinities of unseen antibody variants with high accuracy,
enabling virtual screenings and augmenting the accessible sequence space by orders of
magnitude. In this sense, the trained learner can serve as an oracle, assigning functional
annotations from just sequence |17}/18]. We confirm predictions and consequent designs in

the lab, with a much higher success rate than would be attained with traditional screening.

An additional concern for antibody screening approaches is that the improvement of
binding affinity can negatively affect developability and immunogenicity properties [19].
This issue would remain unaddressed by machine learning models trained to optimize
affinity without regard for other properties. Here we introduce natural antibody sequences
into our language models, allowing us to characterize the naturalness of any given sequence
for a host species. We find that high naturalness scores are associated with improved
immunogenicity and developability metrics, thereby highlighting the importance of
simultaneously optimizing multiple antibody properties during drug lead screening. To
address this task, we present a genetic algorithm for the efficient identification of sequences
with both strong binding affinity and high naturalness.
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Results

Deep language models can predict binding affinity of sequence
variants

We hypothesized that artificial intelligence (AI) models based on deep neural networks could
learn the mapping between variants of a biological sequence (such as an antibody) and
quantitative readouts (such as binding affinity) from experimental data. With this
capability, AI models could be used to simulate experiments in silico for novel sequences,
thereby accessing more variants with improved properties at a lower cost (fig. .
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Figure 1. Al-augmented antibody optimization. Deep learning models fed with ACE
or SPR measurements can quantitatively predict affinities of novel sequence variants, thereby
enabling the in silico design of antibodies with desired binding properties.
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Training of deep learning models requires large, high-quality datasets. To generate
high-throughput measurements of antibody binding affinities, we developed the
Activity-specific Cell-Enrichment (ACE) assay (fig. [S1), a method based on
Fluorescence-Activated Cell Sorting (FACS) and Next-Generation Sequencing (NGS). The
assay is an improved version of our prior work [20]. The ACE assay leverages intracellular,
soluble overexpression of folded antibodies in the SoluPro™ E. coli B Strain. Cells
expressing antibody variants are fixed, permeabilized and stained with fluorescently-labeled
antigen and scaffold-targeting probes. Cells are then binned and sorted based on binding
affinity and expression level of variants. Finally, the collected DNA sequences are amplified
via PCR and sequenced. ACE scores are calculated from sequencing read counts (See
and are proportional to binding affinities.

In order to assess whether the sequence-affinity relationship can be modeled and
predicted, we generated variants of the HER2-binding antibody trastuzumab in Fragment
antigen-binding (Fab) format. Mutagenesis of CDRH2 and CDRH3 was prioritized as these
regions accommodate the highest density of paratope residues, both in general and for
trastuzumab [21,22]. Across this study, up to five simultaneous amino acid substitutions
were introduced randomly in the parent antibody, in up to two CDRs, allowing all natural
amino acids except cysteine (excluded to avoid potential disulfide bond-related liabilities).
Table [l summarizes the datasets used to train models.

In addition to high-throughput (HT) ACE data, we also leveraged low-throughput, but
highly accurate SPR Kp readouts to assess binding affinity. SPR was used for (i) targeted
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Dataset trast-1 trast-2 trast-3
Screening ACE SPR ACE
Mutated CDRH2 positions | - - 10 (55-66)
Mutated CDRH3 positions | 8 (107-114) 8 (107-114) 10 (107-116)
Mutational load Up to double | Up to double | Up to triple
mutations mutations mutations

Allowed natural AAs 19 (no Cys) 19 (no Cys) 19 (no Cys)
Combinatorial space 9,217 9,217 6,710,401
Design Random” Uniform™* Random, stratified™™"
# Measured AA variants 8,932 215 52,596

0 1 1 1
Number of 1 142 23 315
mutations in | 2 8,789 191 4,054
AA variants 3 - - 44,704

4 - - 1,992

5 - - 1,530

Table 1. Trastuzumab variant datasets. Characteristics of datasets used to train
and evaluate models. The positions hosting substitutions (IMGT numbering), number of
simultaneous substitutions (mutational load), and allowed amino acids (all except cysteine)
define the combinatorial sequence space. A subset of sequences was sampled from the
combinatorial sequence space according to the indicated design strategy to build libraries
for screening by the ACE assay or SPR. The numbers of QC-passing amino acid sequence
variants upon screening and analysis are shown, broken down by mutational load. * Random

sampling of combinatorial space. ~~ Uniform sampling by affinity from the trast-1 dataset.

“* Random sampling of combinatorial space per mutational load bin, with defined prevalence

ratios of mutational load bins. Quadruple and quintuple mutants were used only to assess
the performance of predictions from models trained with up to triple mutants.

re-screening of sequence variants upon primary screening with the ACE assay; and (i) to
validate model predictions.

As a proof of concept for our workflow, we created a library containing all sequence
variants with up to two mutations across eight positions of trastuzumab CDRH3 (fig. )
Using the ACE assay, we measured the binding affinity of 8,932 variants (97 % of the
combinatorial space) to create the trast-1 dataset (table[l)). We trained a deep language
model using 90 % of the trast-1 dataset and evaluated the model predictions using the
remaining 10 % as hold-out data. The measured and predicted ACE scores for the hold-out
dataset were highly correlated, indicating that the language model could predict binding
affinity with high accuracy (fig. [2B).

Inaccuracy in predictions is affected by both modeling errors and experimental noise. To
disentangle these two effects, we looked at the agreement between measurement replicates
using the same metrics we previously used to assess the predictive performance of our
models (fig. ) Evaluating the model performance relative to the agreement of
measurement replicates indicated that most of the prediction error could be attributed to
experimental noise (fig. 2IC, fig. [S2B).

The hold-out set evaluated in fig. was randomly drawn from the trast-1 dataset.
Therefore, training and hold-out sets had similar distributions of ACE scores, with a
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Figure 2. Deep language models trained with the ACE assay generated trast-1
dataset quantitatively predict antibody binding affinity. (A) Illustration of the
combinatorial mutagenesis strategy of the trast-1 dataset: up to double mutants in 8 positions
of the CDRHS3 of trastuzumab, screened using the ACE assay. (B) Predictive performance
of a model trained on ACE assay scores of variants from 90 % of trast-1, evaluated on the
remaining 10 % of sequences. (C) Comparative analysis of replicate ACE assay measurements
and ACE assay scores predicted from models trained on individual ACE assay replicates.
Error bars are 95 % confidence intervals. (D) Correlation between ACE assay affinity score
and log-transformed SPR K p measurements. Plot shows ACE assay scores from trast-1 for
sequence variants intersecting with trast-2. (E) Predictive performance against a hold-out set
uniformly distributed with respect to binding affinity (ACE scores from trast-1 for sequences
shown in panel D).
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prevalence of low-affinity binders due to the detrimental effect of most mutations. This o5
design of training and hold-out sets addressed the question of whether models can simulate e
experiments in silico. A more challenging test would involve assessing predictions using a o7

hold-out set distributed uniformly with respect to binding affinities. This hold-out set would os
be enriched in strong binders relative to the training set. To reduce the prevalence of weak oo
binders in this new hold-out set, we sampled >200 sequences from the trast-1 dataset. The 100
sampled sequences were rescreened by SPR to create the trast-2 dataset (table . As 101
expected, we observed strong agreement between ACE scores and SPR-derived —log;y Kp 102
values of trast-2 sequences (fig. 2D), and confirmed the near-uniform distribution of binding 1es
affinities for this dataset. We then used the trast-2 sequences as a hold-out set for models  1oa
trained with trast-1 ACE scores, which confirmed strong predictive performances (fig. ) 108

Since we collected SPR measurements for the trast-2 dataset (fig. 2ID), we investigated 106
whether this dataset alone was sufficient to train a deep language model to directly predict 107
equilibrium dissociation constants. Due to the relatively small size of the dataset (n=215), 1os
all models were trained using 10-fold cross-validation and model performance was evaluated 100
using pooled out-of-fold predictions. We first trained a model to predict —log,, Kp values, 110
and found that the correlation between measured and predicted values was slightly lower 111
than that observed with the high-throughput trast-1 dataset (fig. ) However, 87 % of 112
predicted binding affinities deviated by less than half of a log from their respective measured 113
values. As in the case of trast-1, we also evaluated the trast-2 results relative to the best 114
possible performance defined as the degree of agreement between measurement replicates 115
(ﬁg. , fig. —B) 116

In addition to equilibrium binding constants, SPR provides association (k,,) and 117
dissociation (k,g) coefficients. Models trained to predict these coefficients also performed — 11s
well (fig. —D, figs. |S4] and , opening the possibility for Al to aid the specific engineering 11e
of association and dissociation properties, in addition to the overall binding affinity. Note 120
that the lower correlation coefficient observed for k,, was due to the small range of 121
observed variation. Similarly, the agreement of measurement replicates was also lower for 122
kon than for k,g, which further underscores the need to consider measurement noise when 12
assessing prediction performances. 124

Finally, we asked whether a model simultaneously trained with two affinity data types  izs
could improve the performance compared to a model fed with just a single data type. For 126
this, we supplemented the trast-2 model with trast-1 ACE assay data, using a multi-task 127
training setting. We found that this model slightly out-performed the original model trained izs

only on trast-2 SPR data (fig. [S6). 120

All models trained on the trast-1 and trast-2 datasets were deep language models 130
pre-trained on immunoglobulin sequences from the OAS database (see . We 131
compared these models against baselines, either using a 90:10 train:hold-out split from the 132
trast-1 dataset or a pooled 10-fold cross-validation from the trast-2 dataset. For the first 133
baseline, we trained a deep language model with an identical architecture but no 134

pre-training (i.e. randomly-initialized weights) to evaluate the impact of transfer learning.  13s
For the second baseline, we trained gradient boosted trees using the XGBoost package [23] 136
to determine if deep language models boosted predictive accuracy relative to “shallow” 137
machine learning. The pre-trained model out-performed both baselines for both the trast-1 iss
and trast-2 datasets (fig. , with a stronger benefit seen for the smaller trast-2 dataset, in 130
line with previous observations [24]. 140

To understand why pre-training improves model performance, we inspected model 141
embeddings from all combinations of pre-training vs. no pre-training, and fine-tuning vs. no 1a
fine-tuning (fig. . Even without fine-tuning, embeddings from OAS pre-training appear 13
to have structure, with distinct patches enriched for high (or low) binding affinities. This 14
organization simplifies subsequent fine-tuning with binding data, such that the model 145
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Figure 3. Deep language models trained with the SPR-generated trast-2 dataset
quantitatively predict antibody binding affinity. Performance is evaluated by pooled
10-fold cross-validation. (A) Predictions from a model trained on SPR-measured —log,, Kp
values. (B) Comparative analysis of replicate —log,, Kp measurements and —log;, Kp
predicted from models trained on individual SPR replicates. Error bars are 95 % confidence
intervals. (C) Predictions from a model trained on log;, kon values. (D) Predictions from a
model trained on —log( kg values.

weights could be more easily updated to provide enhanced binding affinity predictions.

Model-guided design of improved antibody variants

Having demonstrated Al prediction performances using hold-out sets and cross-validation,
we moved to using models to design sets of sequences with desired binding properties
followed by validation with dedicated SPR experiments.

To begin, we tasked a model trained on the trast-2 dataset with designing 50 sequences
spanning two orders of magnitude of equilibrium dissociation constants (design set A). This
model-enabled design involved exhaustively making predictions for all variants in the
combinatorial sequence space, followed by sampling of sequences with predicted binding
affinities consistent with requirements. We found an excellent agreement between the

146
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predictions and validations for the design set A (fig. A, fig. [S9A-B). 156
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Figure 4. Deep language models trained with the SPR-generated trast-2 dataset
can design unseen sequence variants that validate in independent SPR experi-
ments. (A) Density plot of predicted (Design) and measured (Validation) binding affinities
of 50 sequences designed to span about 2 orders of magnitude of Kps (set A). (B) Density
plot of predicted (Design) and measured (Validation) binding affinities of 50 sequences
designed to bind HER2 more tightly than parental trastuzumab (set B). (C) Empirical distri-
bution function (ECDF) of the measured (Validation) binding affinities of the 50 sequences
from design set B. Lines indicate the measured —log;, Kp of trastuzumab (or deviations
by -0.1 or -0.5 log). (D) Density plot of binding affinities from set B as predicted by a
model trained with the full trast-2 dataset as in panel B (Design, original predictions) or as
re-predicted (Design, predictions with K p-capped training) by a model trained on a trast-2
dataset version depleted of any variant binding more strongly than parental trastuzumab
(Training, K p-capped).

We then considered a more challenging case, the design of variants with tighter binding 1s7
than trastuzumab (design set B). As in the previous design, we validated 50 sequences by  1ss
SPR and found that 74 % of variants were indeed tighter binders than the parental antibody 1se
(fig. 4B-C), and 100 % complied with the design specification within a tolerance of 0.5 log 160
(fig. , fig. ). This performance is competitive when considering replicate SPR 161
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measurements; a similar fraction of top binders from one replicate pass the threshold in the 12

next (flg ) 163

Because of the small —log,, Kp range spanned in this design, correlation between 164
predictions and measurements was low (fig. ) As similarly observed in k,,, modeling 165
(fig. , if the affinity range is narrow, even measurement replicates correlate poorly with  1es
each other (fig. ) In contrast to correlation, other metrics, such as RMSE and the 167

fraction of predictions deviating less than 0.5 log from measurements, remained in line with 1es
previously observed performance (fig. ). These metrics are generally more informative 160

when considering sequences within a narrow affinity range. 170

The validation results for design set B compare very favorably against a naive, 171
wet-lab-only approach to library screening, in which the fraction of binders tighter than 172
trastuzumab is minimal (fig. [S10)). The strong enrichment for variants of interest provided i7s
by AI models can thus greatly facilitate antibody optimization (fig. . 174

As mentioned above, the model used to design sequence set B was trained on the trast-2 175
dataset, which included some binders stronger than trastuzumab (fig. ) We investigated 176
whether a model that was never fed any sequence as extreme (affinity-wise) as those it was 177

tasked to design could still prioritize top binders. This question is of practical value, as 178
some campaigns may start from training sets devoid of high-affinity sequences. To test the 17
performance of our models in out-of-distribution affinity prediction, we dropped those 180
sequences with higher affinity than trastuzumab from the trast-2 training set. We then 181
trained a model using the remaining data and predicted the affinity of sequences in the 182

design set B. We found that the model was no longer able to make accurate Kp predictions 1ss
for design B. Nonetheless, the model did place the binding affinities of design B variants at 1sa
the top of its predictive distribution (fig. ) This result demonstrates that Al can enable 1ss

the prioritization of high-affinity sequences even if laboratory experiments generating 186
training data did not span the full affinity range. 187
AT predictive performance is maintained when scaling to a larger 188
sequence space 180
To evaluate the accuracy of predictions in a large sequence space, we performed 100
combinatorial mutagenesis of up to three simultaneous mutations in CDRH2 and CDRH3, 1e
ten positions each. We constructed a library by sampling less than 1 % of this sequence 102

space, and measured the binding affinity of the sampled sequence variants using the ACE 103
assay (trast-3, table([] fig. [JA). We then trained a model using 80 % of the trast-3 data, and  1oe

evaluated its performance on the remaining 20 % of hold-out sequences. The model 105
predictions were accurate (fig. ) As a negative control, we confirmed that a model 196

trained on a dataset with randomly shuffled ACE scores had no predictive power (fig. [S11)). 1e7
Since the trast-3 sequence space is vast and we routinely observe a high correlation between 108
ACE scores and SPR-measured — log, Kp values (e.g., fig. [2D), models were trained and 10

evaluated directly on ACE data. 200
Given the predictive accuracy of the trast-3 model on variants with up to three 201
mutations away from the trastuzumab sequence, we tested whether the model could 202

accurately predict the ACE scores of variants with four or five mutations (fig. f|C). The 203
model predicted ACE scores of quadruple mutants (fig. [S12]A) with slightly lower (but still = zoa

actionable) accuracy than those of triple mutants. Although the prediction accuracy for 205
quintuple mutants was much lower (fig. [S12B), the model could still discriminate between 206
high- and low-affinity binders. These results show that the triple mutant model can be 207
extrapolated to quantitatively predict binding scores for up to four simultaneous mutations, zos
and qualitatively predict binding scores for five mutations from the parental sequence. 200
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Figure 5. High-throughput binding scores from the ACE-generated trast-3
dataset can expand predictive capabilities to a larger mutational space. (A)
Tllustration of the combinatorial mutagenesis strategy of the trast-3 dataset: up to triple
mutants in 20 positions (10 in CDRH2, 10 in CDRH3) of trastuzumab, screened using the
ACE assay. (B) Predictive performance of a model trained on the trast-3 dataset, with
20 % of data in the hold-out set. (C) Models trained on up to triple mutants were validated
against a hold-out set of up to triple mutants, and against hold-out sets of quadruple and
quintuple mutants, thereby extrapolating predictions to a higher mutational load than seen
in the training set. (D) Line plot showing model accuracy on a common hold-out validation
set across different training set sizes. Shaded regions indicate standard deviations across
folds. For each training subset size, we show the performance of the OAS pre-trained model
and a randomly-initialized model, each trained using subsets of the high-fidelity trast-3
dataset or a low-fidelity version of the dataset. Under each subset size, we report the fraction
of training data used, the size of the training dataset, and the fraction of the sequence space
covered by the training subset.
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Deep language models are highly sample efficient

The predictive power of any deep learning model is highly dependent on the quality and
quantity of its training data. The trast-3 dataset contains binding affinities for about 50,000
unique antibody sequences, covering 0.7 % of the complete combinatorial sequence space for
this design (table . To determine the relationship between model performance and the
quality and quantity of the training dataset, we trained a cohort of models to predict
affinity from a range of dataset sizes sampled from datasets of varying fidelity (fig. ) We
treated the original trast-3 dataset as a high-fidelity dataset, and created a low-fidelity
dataset by isolating a single DNA variant for each protein sequence from a single FACS sort
replicate (see . The size of the training subsets ranged from 44,165 sequences (the
full training dataset), through 350 sequences (1/128 of the full training dataset), and models
were evaluated on a common hold-out validation dataset containing 10 % of all sequences in
the high-fidelity dataset. At each training subset size, we compared the performance of four
models: (1) OAS pre-trained models trained on a subset from the high-fidelity dataset; (2)
OAS pre-trained models trained on a subset from the low-fidelity dataset; (3)
randomly-initialized models trained on a subset from the high-fidelity dataset; and (4)
randomly initialized models trained on a subset from the low-fidelity subset.

As the size of the training dataset decreased, the model performance degraded. Models
trained on low-fidelity data consistently performed poorer than their counterparts trained
on high-fidelity data, highlighting the importance of high-quality experimental assays.
Pre-training the model with immunoglobulin sequences from the OAS dataset generally
improved its performance (fig. ) Given that the model required at least 2,760 sequences
to maintain a Pearson’s R above 0.8, it is impractical to model this (or larger) sequence
space using only SPR training data; higher-throughput assays such as the ACE assay are
required.

Since the Pearson correlation coefficient remained above 0.8 for all high-fidelity training
subsets covering at least 0.04 % of the potential search space, the model learned to predict
roughly 2,500 sequences for every sequence in the training set. Therefore, deep language
models can expand the search space of an experimental dataset by orders of magnitude.

Deep language models enable interpretable analysis of the antibody
binding landscape

Once trained, deep neural networks can be used as oracles to predict binding affinity scores
for all sequences within the combinatorial space matching the design of the training set.
Fast and accurate predictions of how antibody properties would be affected by sequence
engineering can help guide design strategies.

To gain insight into the binding landscape of trastuzumab variants, we exhaustively
evaluated the effect of all single, double and triple mutations in CDRH2 and CDRHS3.
Trastuzumab has a high binding affinity for its target antigen HER2 (—log,, Kp of 8.25 M
in Fab format, see fig. ) Thus, most mutations were predicted to have a detrimental
effect on the binding affinity (fig. |§[) When considering multiple mutations, we also found
that most combinations were predicted to have a detrimental effect on the binding affinity
(fig. . In particular, positions 55, 107, 111, 112, and 113, were often predicted to have a
detrimental effect when mutated (fig. and tended to interact epistatically with other
mutations. This pointed to a strong contribution to binding affinity from these residues, in
agreement with previous alanine scanning and structural studies [22].

Analyzing the incremental effects of mutations across variants revealed that positions 59,
62, and 110 were relatively tolerant to mutations (fig. [S13)). This suggests that they make a
relatively small contribution to binding, and may offer ideal handles to optimize other

11


https://doi.org/10.1101/2022.08.16.504181

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.16.504181; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

antibody properties without perturbing affinity for the antigen.

Some single mutations in CDRH2, such as Y57D/E, N62E or T65D/E, were predicted to
increase binding affinity (fig. @ Beyond single mutants, combining multiple mutations may
also provide improved high-affinity variants. In fact, as the mutational load increased, the
number of predicted high-affinity sequences increased, although their proportion was
reduced. For instance, 2 (0.56 %) of the single mutants, 192 (0.31 %) of the double mutants,
and 7,063 (0.11 %) of the triple mutants had high (>8.7) predicted ACE scores in the
trast-3 dataset.

We carried out a clustering analysis of model-derived embeddings of high-affinity
sequences (predicted ACE score >8.0). While the space of triple mutants offered many
potential high-affinity candidate sequences, these tended to form compact clusters involving
specific substitutions in a few positions, as shown in fig. Notably, mutation Y57D/E
was observed in several clusters. Also, most high-affinity triple mutants had two or three
mutations in the CDRH2 (particularly in positions 57 and 62 or adjacent positions), while
fewer solutions involved one mutation in CDRH2 and two mutations in CDRH3. This
finding highlights the key role of the CDRH2 region in antigen binding by trastuzumab, as
also noted by others [22]25].

We also found that the impact of a given mutation on binding affinity varied widely with
the presence of other mutations in the sequence, a phenomenon known as contingency [26].
In fig. [ST3] we observed that a given mutation can have a larger, smaller, or even opposite
effect compared to the effect it would have on the parental trastuzumab sequence,
depending on the presence of just another single mutation. In the presence of two mutations,
the possible range of effects for an additional (third) mutation became wider (fig. [S13]).

In a similar vein, epistasis is the deviation from additivity in the effects of two
co-occurring mutations compared to their individual effects [27]. The epistatic interaction
between mutations for all double mutants of trastuzumab is depicted in fig. [SI5] Given the
negative effect that many mutations had on binding affinity, antagonistic, positive epistasis
is often observed (i.e., a double mutant displays a higher binding affinity than expected
based on its constituent single mutants). This is particularly evident in pairs of mutations
involving positions 55, 107, 111, 112, and 113, which are crucial to the binding affinity of
trastuzumab |22]|. Epistatic interactions are also highly contingent on the presence of other
mutations in the sequence. The complex interaction between mutations directly affects the
biochemical properties of antibodies.

Taken together, the diversity of high-affinity sequences and their dilution as a function of

mutational load highlights the value of exhaustively evaluating the space of possible variants.

Such large-scale evaluation is only feasible with the help of computational models. Our
modeling results are in excellent agreement with previous functional and structural studies
and can provide unique insight on how mutations interact to shape the binding affinity of
antibodies. The pervasiveness of epistatic effects also highlights the need for flexible Al
models to accurately guide antibody optimization.

Al shows strong predictive performance on a second case study
involving simultaneous binding predictions for three antigen variants

Our modeling approach established with trastuzumab can be readily extended to other
antibodies. To demonstrate this, we leveraged public binding data of variants of the broadly
neutralizing (bn) antibody CR9114 (see [Supplementary Information)) [28|. Since the bnAb
CR9114 dataset provides binding data for three different influenza subtypes of the target
antigen hemagglutinin (HA), we extended the model to support multi-task affinity
predictions to multiple targets simultaneously. We also explored the ability of the model to
combine classification and regression in a single mixture model, since many of the CR9114
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Figure 6. Global sequence-affinity mapping of trastuzumab variants. Pre-
dicted binding affinities for (A) single or (B) double mutants from a model trained
on the trast-3 dataset. Positions holding mutations comprised CDRH2 (10 positions
starting with R55) and CDRH3 (10 positions starting with W107). The reference
trastuzumab sequence is highlighted with crosses. Mutations at each position include
all possible substitutions with natural amino acids except cysteine, sorted alphabetically
(ie, X €[A,D,E,F\G,H,I,K,L, M,N,P,Q,R,S,T,V,W,Y]).
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variants lost binding to one or more HA subtypes. Lastly, we evaluated the impact of the
training set size on the model performance.

Classification Regression
Training Balanced Accuracy RMSE %w /i 0.5-fold
Size Model H1 H3 FluB | H1 H3 FluB | H1 H3 FluB
Reg-PT NA NA NA 0.12 | 0.17 | 0.33 99% | 99% | 88%
6509 Mix-PT | 091 | 0.98 | 0.96 | 0.14 | 0.19 | 0.32 | 99% | 99% | 88%

(10%) | Reg-NPT | NA | NA | NA | 0.4 | 0.31 | 045 | 99% | 90% | 73%
Mix-NPT | 0.92 | 098 | 096 | 0.14 | 0.27 | 0.48 | 99% | 93% | 64%
RegPT | NA | NA | NA | 015 | 028|083 | 98% | 93% | 52%
651 Mix-PT 0.84 0.95 0.64 0.16 | 0.28 | 0.81 98% | 92% | 51%
(1 %) Reg-NPT | NA | NA | NA | 026 | 0.54 | 0.98 | 94% | 67% | 44%
Mix-NPT | 0.90 | 0.94 | 059 | 0.18 | 0.45 | 0.84 | 98% | 73% | 51%
Reg-PT | NA | NA | NA | 034|060 | 079 | 89% | 61% | 46%
65 Mix-PT 0.59 | 0.86 | 0.51 0.37 | 0.61 | 1.02 87% | 60% | 43%
(0-1%) | Reg-NPT | NA | NA | NA | 046 | 0.71 | 095 | 81% | 54% | 37%
Mix-NPT | 0.73 | 091 | 051 | 044 | 0.72 | 1.06 | 80% | 50% | 34%

Table 2. Joint model affinity prediction performance for CR9114 on multiple
influenza strains of the hemagglutinin (HA) antigen. For each training set size (10 %,
1 %, 0.1 % of 65,091) four models were trained (Reg: Regression only model; Miz: Mixture
classification /regression model; PT: initialized with pre-trained OAS-model weights; NPT
initialized with random weights). Results are shown for these models using pooled CV. The
full CR9114 dataset includes 63,419 (97 %) H1, 7,174 (11 %) H3, and 198 (0.3 %) FluB
positive binders.

Results (table [2| and figs. to showed that a single model could be trained to
jointly predict affinities of a given antibody sequence against multiple distinct antigen
targets. As expected, the predictive power of the model was lower for the FluB target
compared to H1 and H3, since the full dataset contains only 193 positive FluB binders. This
left only 19 positive examples when using a training set of 10 % and only 1-2 positive
examples in training sets of 1 % and 0.1 % (a minimum of one positive and negative
example for each target was required when selecting the cross-validation folds, see
[Supplementary Information)). Nevertheless, even with as little as 19 training examples, 88 %
of FluB predictions were within 0.5 log of their measured values when using initial weights

pre-trained on the OAS dataset, compared to only 73 % when using random initial weights.

Using pre-trained weights improved performance in all cases where the number of training
examples was below 1,000.

The mixture model was able to perform well on the classification tasks without
significant loss of performance on the regression tasks compared to the regression only
model. The balanced accuracy of the model predictions was above 0.84 in all cases where
the training set contained at least 7 positive and 7 negative examples, achieving a 0.91
balanced accuracy score on the H3 binding task even with training sets of only 65 variants
(7 positive and 58 negative variants on average).

Optimizing antibody naturalness may mitigate development hurdles

The development of a candidate antibody into a therapeutic drug is a complex process with
a high degree of pre-clinical and clinical risk. This risk is often due to numerous challenges
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related to production, formulation, efficacy and adverse reactions. Modeling these risks has 330
been a tremendous challenge for the industry due to the difficulty in obtaining informative, 33
abundant and relevant data. 332

We hypothesized that learning sequence patterns across natural antibodies from different sss
species could be useful to identify and prioritize “human-like” antibody variants (as opposed s3a
to unnatural sequences) and, ultimately, mitigate drug development risks (fig. @ To this 335
aim, we took advantage of our OAS pre-trained language models to evaluate antibody 336
sequences for their naturalness (see . We define naturalness as a score computed 337
by pre-trained language models that measures how likely it is for a given antibody sequence sse
to be derived from a species of interest, including human. Thus, naturalness might be used 330

as a guiding metric in antibody design and engineering. 340

To determine the usefulness of naturalness, we evaluated its association with four 341
antibody properties (fig. [7)). The first property studied was immunogenicity, for which 342
Anti-Drug Antibodies (ADA) responses were collected from numerous primary studies on  sa3
clinical-stage antibodies by Marks et al. [29]. A potential confounding factor in a 344

naturalness-immunogenicity association analysis is that some antibodies have a fully human sss
origin, while others are humanized, chimeric or murine. Scoring antibodies of different origin sse
by naturalness would amount to binning them primarily by species, which would be trivial sa7

and uninformative. By contrast, scoring antibodies belonging to the same class would 348
amount to genuinely ranking from most natural to least natural. The only two antibody 340
classes in Marks et al. large enough to support a statistical analysis are human and 350
humanized antibodies. We investigated the latter because their reported immunogenicity is ss:
greater [29], thereby providing an ideal case study. 3852

A scatterplot of the fraction of ADA-positive patients vs. naturalness scores reveals a 3853
weak, non-significant correlation (fig. [S22)). However, closer inspection of ADA responses 354

showed that most data points are in the 0-10 % range, with a few outliers above 20 %. We = sss
reasoned that outliers could blur the relationship between naturalness and immunogenicity. sse
To mitigate the impact of outliers, we binned naturalness scores (fig. [S23|A) and computed ss7
the median ADA responses per naturalness bin. This analysis revealed that antibodies with sss
higher naturalness scores trigger lower median ADA responses than less natural antibodies sse

(flg ) 360

The second property considered was developability, which can be estimated with the 361
Therapeutic Antibody Profiler (TAP) [32]. We computed naturalness scores (with our 362
model) and developability scores (with TAP) for the heavy-chain sequences from a 363
high-diversity phage display dataset [30] (“Gifford Library”, fig. [S23B) as well as for 364
trastuzumab variants (fig. [S23C). In both cases, we found a strong association between 365

naturalness and TAP-determined developability (fig. , fig. . This is a remarkable 366
result because naturalness scores were obtained upon training exclusively with examples of 367
naturally occurring antibody sequences, while TAP was calibrated using distributions of five zes
metrics computed on therapeutic antibodies [32]. The association between naturalness and  zeo

TAP flags suggests that developable antibodies are enriched in human-like antibodies. 370

The third property investigated was antibody expression level in mammalian (HEK-293) 37
cells, which has been reported for clinical-stage antibodies by Jain et al. [31]. As for 372
immunogenicity, the dataset comprises several classes of antibodies and we again focused on 373
humanized antibodies. We found that antibodies with high naturalness scores were 374
expressed at higher levels than antibodies with low scores (fig. [7D, fig. [S23]D). 37

The fourth property considered was mutational load, which is the number of amino acid s7e
substitutions in a variant compared to a parental antibody sequence. We computed 377
naturalness scores for 6,710,400 single-, double-, and triple-mutant trastuzumab variants 378
(fig. ) We found that naturalness was negatively associated with mutational load. This is  s7e
consistent with the observation that most mutations have detrimental effects. Since the 380
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Figure 7. Associations between antibody naturalness, immunogenicity, developa-
bility and other properties. (A) Language models pre-trained with antibody repertoire
sequences can be leveraged to compute the naturalness of an antibody sequence conditioned
on a given species. Naturalness scores were investigated for association with four antibody
properties: (B) Immunogenicity using Anti-Drug Antibody (ADA) responses to humanized
clinical-stage antibodies reported by Marks et al. (n=97); (C) Dewvelopability failures as
predicted by the Therapeutic Antibody Profiler (TAP) for round 3-enriched phage display
hits from the Gifford library (n=882); (D) Ezpression levels in HEK-293 cells (mg/L)
of clinical-stage humanized antibodies from Jain et al. [31] (n=67); (E) Mutational load of
trastuzumab variants using a mutagenesis strategy as the trast-3 dataset (n=6,710,400). The
dashed line corresponds to the naturalness of the parental trastuzumab sequence. In all box
plots, the four bins (Low, Low-Mid, Mid-High, High) result from dividing the naturalness
range into four parts of equal size (see fig. [S23)). In all panels, p-values were computed
using the Jonckheere-Terpstra test for trends across the four bins going from Low to High.
Datasets in panels B and D were scored using the average naturalness of both the heavy
and light chains, whereas datasets in panels C and E comprised only heavy-chain variants
and were consistently scored only with the heavy-chain models.
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introduction of mutations can degrade naturalness, it is important to simultaneously
optimize naturalness and binding affinity of antibodies.

Sequence variant generation with desired properties

Antibody optimization can be performed to a limited extent for individual properties using
a number of established laboratory approaches. For example, deep mutational scanning has
been used to improve the binding affinity of antibody candidates [5|. However, large
mutational spaces cannot be exhaustively screened by these methods, limiting the scope of
potential improvements. Library screening methods, such as phage display, can overcome
this obstacle, but selecting for a single property at a time (such as binding affinity) may
negatively affect other properties of interest [19]. For example, we showed that increasing
the mutational load often lowers naturalness (fig. ED)

We exhaustively predicted ACE and naturalness scores of all variants with up to three
mutations from trastuzumab. Of the 6.7 million variants, just 46,931 (0.7 %) had predicted
ACE scores higher than trastuzumab (fig. [S25]A). Of these, only 4,003 (8.5 %) had a
naturalness score on par or higher than trastuzumab (fig. [S25B). Randomly screening this
space using the approximately 50,000-member trast-3 library yielded only 60 variants with
higher ACE scores and naturalness than trastuzumab.

In silico screening provides a way to address this issue by optimizing for multiple
properties simultaneously with a designer objective function. We built a genetic algorithm
(GA) on top of our affinity and naturalness model oracle that was capable of greatly
improving the throughput of our in silico screening process. As an example, we could
minimize, maximize, or target specific ACE scores in a search space of over 6.7 million
sequence variants (fig. ), while simultaneously maximizing naturalness (fig. )

After 20 generations, the GA performed nearly as well as an exhaustive search of the
mutational space (fig. ); 85 of the top 100 variants identified by the GA were among the
top 100 variants overall. In addition, all of the top variants identified by the GA were within
5 % of the maximum achievable ACE score (9, resulting from 9 sorting gates) and had
higher naturalness scores than trastuzumab. As a baseline, we performed a random search
by querying the same number of sequences as the GA. This search was only able to find two
sequences with higher ACE score and naturalness than trastuzumab (fig. [§C).

Unlike an exhaustive search of the mutation space, GA-driven optimization is highly
efficient. In each generation, the GA sampled 200 new variants, resulting in only 4,000 total
sequences sampled across all 20 generations. In addition, over half of the top 100 individuals
were selected by the GA in the first 12 generations (fig. ) Altogether, these results show
that a genetic algorithm built on top of predictive models for binding affinity and
naturalness can quickly and efficiently identify a set of top candidates for downstream
development. The value of optimization techniques coupled with AI oracles will likely
increase as in silico design is applied to larger combinatorial sequence spaces.
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Figure 8. A genetic algorithm can efficiently maximize, minimize, or target
specific ACE scores while maximizing naturalness. (A) Each line tracks the average
predicted ACE score of the best 100 sequences observed across the evolutionary trajectory.
Shaded regions indicate the standard deviation. (B) Average naturalness of the best 100
sequences observed across the evolutionary trajectory. Shaded regions indicate the standard
deviation. (C) ACE and naturalness scores of the best 100 sequences determined through
three search strategies: Genetic Algorithm, Exhaustive Search, and Random Search. Red
dashed lines indicate the scores predicted for trastuzumab. Purple dashed lines indicate
maximum scores predicted across the entire combinatorial space. (D) Histogram showing
the first generation where each of the top 100 sequences observed along the evolutionary
trajectory was identified.
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Discussion

Deep learning methods have demonstrated rapid progress for the modeling of proteins,
including their sequence, structure, and function. Likewise, protein interactions are receiving
increased attention for the purposes of therapeutic design. A key limitation for many of
these efforts is the ability to synthesize large libraries of proteins and quantitatively assess
their attributes. Here we demonstrate that our ACE assay is a powerful complement to deep
learning models, providing the throughput and fidelity needed to accurately model antibody
binding affinity with up to four/five mutations across two CDRs (combinatorial space:
108-10'°) in a single experiment. The ACE assay provides advantages over existing methods
for large scale antibody variant interrogation such as Tite-Seq [33], SORTCERY |[34] and
Phage Display [35]. First, the ACE assay utilizes the SoluPro™ E. coli B Strain to solubly
express antibodies intracellularly, avoiding binding artifacts associated with surface display
formats. Additionally, the ACE assay leverages genetic tools available for E. coli, enabling
faster library generation cycles and increased transformation efficiency compared to other
organisms. Finally, the ACE assay is a true screening method where all variants are
measured regardless of affinity strength, as opposed to selection methods, such as phage
display, where only high-affinity binders are preferentially isolated.

The predictive ability of our deep learning models demonstrated here is enabled by the
quantitative data generated by our improved ACE assay, which provides two distinct
advantages from a modeling standpoint. The first is the expanded capabilities of models
trained on quantitative data for overall increased performance and quantitative predictions,
which are particularly useful when the goal is to tune the binding affinity rather than simply
maximize it. Secondly, quantitative training data allows for the intelligent selection of
sequences for downstream quantification with lower-throughput assays, such as SPR. The
sequence space available for bioengineering is enormous and heavily skewed toward
deleterious mutations. A common approach to this problem is to bias the mutational library
towards specific locations or key mutations, but the strength of epistatic effects identified by
our models suggest these approaches systematically miss potentially impactful sequence
changes. Our pre-quantification step with the improved ACE assay allows us to access
sequences throughout the binding affinity spectrum without bias, which increases the
generalization power of the models.

Only a very small fraction of antibody sequences within the enormous combinatorial
space have been detected in nature; there are >10% high-quality, unique sequences in the
OAS database versus more than 10'?° possible unique CDR sequences for the longest
reported human sequences. Our naturalness model can help determine whether a novel
sequence belongs to this category, and we roughly estimate the size of this natural space as
10%° (fig. . While this estimate has considerable uncertainty, it is clear that the natural
space is much larger than can possibly be screened in a lab or in-silico. At the same time,
these natural sequences are vanishingly rare in screens of random sequence variants. The
solution we present here is to apply models trained on both naturalness and affinity data,
the intersection of which effectively allows evaluation of a larger whitespace of sequences
than can be physically assessed, while also focusing screening on the most relevant “natural”
sequences.

In future work, our co-optimization of two antibody properties could be extended to the
co-optimization of additional properties relevant to protein interactions and therapeutic
potential. Training models on multiple affinity datasets unlocks binding predictions for
multiple antigens or antigen variants, as we showed here for CR9114. In principle,
multi-antigen predictions could facilitate engineering of breadth (co-optimization for antigen
escape variants), specificity (co-optimization to reduce binding to undesired members of a
protein family, while increasing binding to desired members of the same family) and species
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cross-reactivity (co-optimization for human and cynomolgus orthologs), just to name a few.

We demonstrated that pre-training on natural sequences improved the predictive
performance of our models. Likewise, the models can continue to improve with the addition
of new data, both with respect to new antibodies and with the addition of new performance
or developability attributes. Naturalness can be computed extremely rapidly and can
complement other scores, with the potential to reduce preclinical or clinical attrition caused
by complex properties such as immunogenicity. Additional properties could be added
alongside data from their respective assays, such as conditional pH binding, effector function,
melting temperature, self-aggregation, viscosity and more. For most of these, a single model
trained on a high-quality dataset could serve for diverse antibodies of interest and even
improve the power of the binding affinity models through multi-task learning. Importantly,
the framework presented facilitates tuning an antibody property toward a desired
specification, not necessarily limited to selecting for variants at the extremes of a given range.
Moreover, while the models we presented are focused on target affinity and naturalness of
antibodies, the approach could in principle be extended to other protein classes.

While Al-assisted optimization of biological sequences can reduce therapeutic
development time, it does not by itself offer a fully in-silico replacement. To this end, fully
generative modeling approaches are needed. However, their training and validation faces an
even greater data challenge, since the full de novo combinatorial space considered without
the anchor of the parental sequence is dramatically larger, and strong selective binders are an
infinitesimally small slice of that space. Structure-based approaches are showing increasing
capabilities and may be useful for bridging this gap. The language models presented here
can serve as in-silico oracles within their applicability domain, and might provide an
effective training ground for generative models. Harmonizing antibody optimization and de
novo generation may be the next big step in data-driven therapeutic design.
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Materials and Methods

Libraries

Cloning Antibody variants were cloned and expressed in Fab format. To produce ACE
and SPR datasets meant for model training and evaluation (table , we synthesized DNA
variants spanning CDRH2 and CDRH3 in a single oligonucleotide using ssDNA oligo pools
(Twist Bioscience). Codons were randomly selected from the two most common in E. coli B
strain [36] for each variant. Two synonymous DNA sequences were synthesized (5 or 10 for
parental trastuzumab and positive/negative controls) for each amino acid variant.
Amplification of Twist Bioscience ssDNA oligo pools was carried out by PCR according to
Twist Bioscience’s recommendations with the exception that Platinum SuperFi IT DNA
polymerase (ThermoFisher) was used in place of KAPA polymerase. Briefly, 20 pL reactions
consisted of 1x Platinum SuperFi IT Mastermix, 0.3 nM each of forward and reverse primers,
and 10 ng oligo pool. Reactions were initially denatured for 3 min at 95 °C, followed by 13
cycles of: 95 °C for 20 s; 66 °C for 20 s; 72 °C for 15 s; and a final extension of 72 °C for

1 min. DNA amplification was confirmed by agarose gel electrophoresis, and amplified DNA
was subsequently purified (DNA Clean and Concentrate Kit, Zymo Research).

To build libraries meant for SPR validation of model designs in independent experiments,
oligonucleotides (59 nt) spanning CDRH3 and the immediate upstream/downstream
flanking nucleotides were synthesized by Integrated DNA Technologies (IDT). Codon usage
was identical for all variants, except at mutated positions. Olignoucleotides were pooled
such that each oligonucleotide was represented in an equimolar fashion within the pool.
This single stranded oligonucleotide pool was used directly in cloning reactions (see below)
without prior amplification.

To generate linearized vector, a two-step PCR was carried out to split Absci’s plasmid
vector carrying fab format trastuzumab into two fragments in a manner that provided
cloning overlaps of approximately 30 nucleotides (nt) on the 5" and 3’ ends of the amplified
Twist Bioscience libraries, or 18 nt on the 5’ and 3’ ends of IDT oligonucleotides. Vector
linearization reactions were digested with DPN1 (New England Bioloabs) and purified from
a 0.8 % agarose gel (Gel DNA Recovery Kit, Zymo Research) to eliminate parental vector
carry through. Cloning reactions consisted of 50 fmol of each purified vector fragment,
either 100 fmol purified library (Twist Bioscience) or 10 pmol (IDT) insert, and 1x final
concentration NEBuilder HiFi DNA Assembly (New England Biolabs). Reactions were
incubated at 50 °C for either two hours (Twist Bioscience libraries) or 25 min (IDT library),
and subsequently purified (DNA Clean and Concentrate Kit, Zymo Research). Transformax
Epi300 (Lucigen) E. coli were transformed by electroporation (BioRad MicroPulser) with
the purified assembly reactions and grown overnight at 30 °C on LB agar plates containing
50 pg/ml kanamycin. The following morning colonies were scraped from LB plates and
plasmids were extracted (Plasmid Midi Kit, Zymo Research) and submitted for QC
sequencing.

QC Antibody variant libraries were amplified by PCR across the CDRH2 and CDRH3
region and sequenced with 2x150 nt reads using the Illumina NextSeq 1000 P2 platform
with 20 % PhiX. The PCR reaction used 10 nM primer concentration, Q5 2x master mix
(NEB) and 1 ng of input DNA diluted in MGH30. Reactions were initially denatured at
98 °C for 3 min; followed by 30 cycles of 98 °C for 10 s, 59 °C for 30 s, 72 °C for 15 s; with a
final extension of 72 °C for 2 min.

Sequencing results were analyzed for distribution of mutations, variant representation,
library complexity and recovery of expected sequences. Metrics included coefficient of
variation of sequence representation, read share of top 1 % most prevalent sequences and
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percentage of designed library sequences observed within the library.

Activity-specific Cell-Enrichment (ACE) assay

Antibody Expression in SoluPro™ E. coli B Strain SoluPro™ E. coli B strain
was transformed by electroporation (Bio-Rad MicroPulser). Cells were allowed to recover in
1 ml SOC medium for 90 min at 30 °C with 250 rpm shaking. Recovery outgrowths were
centrifuged for 5 min at 8,000 g and the supernatant was removed. Resultant cell pellets
were resuspended in 1 mL of induction media (IBM) (4.5 g/L Potassium Phosphate 547
monobasic, 13.8 g/L Ammonium Sulfate, 20.5 g/L yeast extract, 20.5 g/L glycerol, 1.95 g/L
Citric Acid) containing inducers and supplements (260 pM Arabinose, 50 ng/mL
Kanamycin, 8 mM Magnesium Sulfate, 1 mM Propionate, 1X Korz trace metals) and then
added to 100 ml IBM containing inducers and supplements in a 1 L baffled flask. Antibody
Fab induction was allowed to proceed at 30 °C with 250 rpm shaking for 24 h. At the end of
24 h, 1 mL aliquots of the induced culture were adjusted to 25 % v/v glycerol and stored at
-80 °C.

Cell Preparation High-throughput quantitative selection of antigen-specific
Fab-expressing cells was adapted from the approach described in Liu et al. [20]. For staining,
an ODggp = 2 of thawed glycerol stocks from induced cultures were transferred to 0.7 ml
matrix tubes, centrifuged at 3300 g for 3 min, and resulting pelleted cells were washed three
times with PBS + 1 mM EDTA. Washed cells were thoroughly resuspended in 250 pL of
33 mM phosphate buffer (NagHPO,) by pipetting then fixed by the further addition of
250 pLb 32 mM phosphate buffer with 0.5 % paraformaldehyde and 0.04 % glutaraldehyde.
After 40 min incubation on ice, cells were washed three times with PBS, resuspended in
lysozyme buffer (20 mM Tris, 50 mM glucose, 10 mM EDTA, 5 pg/ml lysozyme) and
incubated for 8 min on ice. Fixed and lysozyme-treated cells were equilibrated in stain
buffer by washing 3x in 0.1% saponin buffer (1x PBS, 1 mM EDTA, 0.1 % saponin, 1 %
heat-inactivated FBS).

Staining Prior to library staining, the Her2 probe was titrated against the reference strain
to determine the 75 % effective concentration (ECy5). After lysozyme treatment and
equilibration, the trast-1 library was resuspended in 250 pL saponin buffer and transferred
to a new matrix tube. The trast-3 library was incubated for 20 min in AlphalLISA
immunoassay assay buffer (Perkin Elmer; 25 mM HEPES, 0.1 % casein, 1 mg/ml
dextran-500, 0.5 % Triton X-100, and 0.05 % kathon) for additional permeabilization prior
to equilibration and resuspension in saponin buffer. A 2x concentration of stain reagents —
100 nM human HER2:AF647 (Acro Biosystems) and 60 nM anti-kappa light chain:AF488
(BioLegend) — was prepared in saponin buffer, then 250 uL probe solution was transferred to
the prepared cells bringing the total stain volume to 500 pL. with 50 nM Her2 and 30 nM
anti-kappa LC. Libraries were incubated with probe overnight (16 h) with end to end
rotation at 4 ° C protected from light. After incubation, cells were pelleted, washed 3x with
PBS, and then resuspended in 500 nL. PBS by thorough pipetting.

Sorting Libraries were sorted on FACSymphony S6 (BD Biosciences) instruments.
Immediately prior to sorting, 50 pL prepped sample was transferred to a flow tube
containing 1 mL PBS + 3 pL propidium iodide. Aggregates, debris, and impermeable cells
were were removed with singlets, size, and PI" parent gating. To reduce expression bias, an
additional parent gate was set on the mid 65 % of peak expression positive cells. Collection
gates were drawn to evenly sample the log range of binding signal. The far right gate was
set to collect the brightest 10,000 events over the allotted sort time, estimated by including
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the 5 brightest events for every 65,000 in the expression parent gate. Seven additional gates
were then set to fractionate the positive binding signal, and one gate collected the binding
negative population (fig. . Libraries were sorted simultaneously on two instruments
with photomultipliers adjusted to normalize fluorescence intensity, and the collected events
were processed independently as technical replicates.

Next-generation sequencing Cell material from various gates was collected in a diluted
PBS mixture (VWR), in 1.5 mL tubes (Eppendorf). Post sort samples were spun down at
3,800 g and tube volume was normalized to 20 pl. Amplicons for sequencing were generated
from one of two methods. The frist method amplifies the CDRH2 and CDRH3 region via a
two-phase PCR, using collected cell material directly as template. During the initial PCR
phase, unique molecular identifiers (UMIs) and partial Illumina adapters were added to the
CDRH2 and CDRH3 amplicon via 4 PCR cycles. The second phase PCR added the
remaining portion of the Illumina sequencing adapter and the Illumina i5 and i7 sample
indices. The initial PCR reaction used 1 nm UMI primer concentration, Q5 2x master mix
(NEB) and 20 pl of sorted cell material input suspended in diluted PBS (VWR). Reactions
were initially denatured at 98 °C for 3 min, followed by 4 cycles of 98 °C for 10 s; 59 °C for
30 s; 72 °C for 30 s; with a final extension of 72 °C for 2 min. Following the initial PCR,
0.5 uM of the secondary sample index primers were added to each reaction tube. Reactions
were then denatured at 98 °C for 3 min, followed by 29 cycles of 98 °C for 10 s; 62 °C for
30 s; 72 °C for 15 s; with a final extension of 72 °C for 2 min. The second method amplifies
the CDRH2 and CDRH3 region without the addition of UMIs. This single phase PCR used
10 nM primer concentration, Q5 2x master mix (NEB) and 20 ul of sorted cell material
input suspended in diluted PBS (VWR). Reactions were initially denatured at 98 °C for

3 min, followed by 30 cycles of 98 °C for 10 s; 59 °C for 30 s; 72 °C for 15 s; with a final
extension of 72 °C for 2 min. After amplification by either method samples were run on a
2 % agarose gel at 75 V for 60 min and the proper length band was excised and purified
using the Zymoclean Gel DNA Recovery Kit (Zymo Research). Resulting DNA samples
were quantified by Qubit fluorometer (Invitrogen), normalized and pooled. Pool size was
verified via Tapestation 1000 HS and was sequenced on an Illumina NextSeq 1000 P2 (2x150
nt) with 20 % PhiX.

ACE assay analysis

In order to produce quantitative binding scores from reads, the following processing and
quality control steps were performed:

1. Paired-end reads were merged using FLASH2 |37 with the maximum allowed overlap
set according to the amplicon size and sequencing reads length (150 bases for all the
libraries described in this manuscript).

2. If UMIs were added during amplification, the downstream UMI tag (last 8 bases) was
moved to the beginning of the read, and the UMI Collapse tool [38] was used in
FASTQ mode to remove any PCR duplicates. Only fully identical sequences were
considered to be duplicates and error correction was not performed at this stage.

3. Primers were removed from both ends of the merged read using cutadapt tool [39],
and reads were discarded where primers were not detected.

4. Reads were aggregated across all FACS sorting gates and aligned to the reference
sequence (parental version of the amplicon) in amino acid space. Alignment was
performed using the Needleman—Wunsch algorithm implemented in Biopython [40],
with the following parameters: PairwiseAligner, mode=global, match_score=5,
mismatch_score=-4, open_gap_score=-20, extend_gap_score=-1. Parameters
were chosen by manual inspection across a number of processed libraries.
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5. Reads were then discarded if (1) the mean base quality was below 20, or (2) a 636
sequence (in DNA space) was seen in fewer than 10 reads across all gates (or in less  e37
than 10 unique molecules following UMI deduplication, when available). 638

6. We also flagged: (1) sequences that align to the reference with a low score (defined as 3o
less then 0.6 of the score obtained by aligning the reference to itself); (2) sequences 640
containing stop codons outside of the region of interest and (3) sequences containing e
frame-shifting insertions or deletions. Flagged sequences were not included in any 6a2
mutation-related statistics, but were used for count normalization for binding score 63
calculations. FastQC [41] and MultiQC [42] were used to generate sequencing quality ess

control metrics. 645

7. For each gate, the prevalence of each sequence (read or UMI counts relative to the 646
total number of reads/UMIs from all sequences in that gate) was normalized to 1 6a7
million counts. 6a8

8. The binding score (ACE score) was assigned to each unique DNA sequence by taking ese
a weighted average of the normalized counts across the sorting gates. For all 650
experiments, weights were assigned linearly using an integer scale: the gate capturing es:
the lowest fluorescence signal was assigned a weight of 1, the next lowest gate was 652
assigned a weight of 2, etc. 653

9. Any detected sequence which was not present in the originally designed and 654
synthesized library was dropped. 655

10. For each unique amino acid variant, ACE scores from synonymous DNA sequences 656
were averaged. 657

11. ACE scores were averaged across independent FACS sorts, dropping sequences for 658
which the standard deviation of replicate measurements was greater than 1.25. An 659
amino acid variant was retained only if we collected at least three independent 660

QC-passing observations between synonymous DNA variants and replicate FACS sorts. ee1

Surface Plasmon Resonance (SPR) o62

Antibody expression in SoluPro™ E. coli B strain Individual SoluPro™ E. coli ees
B strain colonies expressing antibody Fab variants were inoculated in LB media in 96-well  eea
deep blocks (Labcon) and grown at 30 °C for 24 h to create seed cultures for inducing 665
expression. Seed cultures were then inoculated in IBM containing inducers and supplements ees
in 96-well deep block and additionally grown at 30 °C for 24 h. Post induction samples were ee7
transferred to 96-well plates (Greiner Bio-One), pelleted and lysed in 50 pL lysis buffer (1X ees

BugBuster protein extraction reagent containing 0.01 KU Benzonase Nuclease and 1X 669
Protease inhibitor cocktail). Plates were incubated for 15-20 min at 30 °C then centrifuged 7o
to remove insoluble debris. After lysis samples were adjusted with 200 pL. SPR running 671

buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 % w/v Tween-20, 0.5 mg/mL 672
BSA) to a final volume of 260 pL and filtered into 96-well plates. Lysed samples were then e7s
transferred from 96-well plates to 384-well plates for high-throughput SPR using a Hamilton e7a

STAR automated liquid handler. Colonies were prepared in two sets of independent 675
replicates prior to lysis and each replicate was measured in two separate experimental runs. e7e
In some instances, single replicates were used, as indicated. 677

SPR experiments High-throughput SPR experiments were conducted on a microfluidic s
Carterra LSA SPR instrument using SPR running buffer (10 mM HEPES, 150 mM NaCl, e
3 mM EDTA, 0.01 % w/v Tween-20, 0.5 mg/mL BSA) and SPR wash buffer (10 mM 680
HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 % w/v Tween-20). Carterra LSA SAD200M 681
chips were pre-functionalized with 20 pg/mL biotinylated antibody capture reagent for 600 s  es2
prior to conducting experiments. Lysed samples in 384-well blocks were immobilized onto  ess
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chip surfaces for 600 s followed by a 60 s washout step for baseline stabilization. Antigen  esa
binding was conducted using the non-regeneration kinetics method with a 300 s association ess
phase followed by a 900 s dissociation phase. For analyte injections, six leading blanks were ese
introduced to create a consistent baseline prior to monitoring antigen binding kinetics. After esz

the leading blanks, five concentrations of HER2 extracellular domain antigen (ACRO 688
Biosystems, prepared in three-fold serial dilution from a starting concentration of 500 nM), ese
were injected into the instrument and the time series response was recorded. In most 600

experiments, measurements on individual DNA variants were repeated four times. Typically 6o
each experiment run consisted of two complete measurement cycles (ligand immobilization, es2
leading blank injections, analyte injections, chip regeneration) which provided two duplicate ee3

measurement attempts per clone per run. In most experiments, technical replicates 694
measured in separate runs further doubled the number of measurement attempts per clone ees
to four. 696

Sensorgram baseline subtraction Sensorgrams were generated from raw data using the ooz

Carterra Kinetics GUI software application provided with the Carterra LSA instrument. 608
Sensorgram response values vs. time for 384 regions of interest (ROIs) on the Carterra chip ees
were corrected using a double-referencing and alignment technique implemented by the 700

Carterra manufacturer. This technique incorporates both the time-synchronous response of 701
an interspot reference region adjacent to the ROI, as well as the non-synchronous response 7oz

from a leading blank buffer injection flowing over the same ROI during an earlier 703
experiment run cycle, to estimate and subtract a background response. Corrected 704
sensorgrams were exported from the Kinetics software package for offline analysis. 705

Kinetic binding parameters Kinetic binding parameters were estimated via non-linear 76
regression using a standard 1:1 binding model which was modified by the incorporation of a 77

vector of ¢, parameters each unique to one analyte concentration. For a single analyte 708
concentration, the association phase model is: 700
CaRmaz —(cakontkop)(t—tc)
R(t,c,) = ————[1 — e~ \CalonTFey e
( U«) Ca + KD[ ]
where
t = time

t. = concentration-dependent time offset

¢, = analyte concentration
kon = forward (association) reaction rate constant
ko = backward (dissociation) reaction rate constant
Kp = kog/kon

R4 = asymptotic maximum instrument response.

The additional concentration-dependent time offset parameter t. was needed because of the 710

unique measurement system that Carterra uses, in which successive association phase 11
measurements at each new analyte concentration are attempted before the analyte from the 712
previous phase has fully dissociated, leading to response curves which do not begin from 713

zero response at t = 0. The time offset parameters represent the projected time intercept of 71a
each association response curve; i.e., the amount of time prior to the start of the association 71s
phase, at which the measurement would have had to begin in order to reach the actual 716
observed response at ¢ = 0. The dissociation phase was modeled as a standard decaying 717
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exponential curve:
R(t,ca) = RgeFor(t=ta=te)

where

tq = start time of dissociation phase measurement

R, = final estimated response value R(t4,c,) from association equation.

The regression was conducted using R-language [43| scripts. Minpack.lm [44], an R-ported
copy of MINPACK-1 [45] [46], a FORTRAN-based software package which implements the
Levenberg-Marquardt [47] [48] non-linear least squares parameter search algorithm, was
used to conduct the parameter search.

Next-generation sequencing To identify the DNA sequence of individual antibody
variants evaluated in SPR, NGS was carried out on measured variants. Individual colonies
were picked from LB agar plates containing 50 pg/mL Kanamycin (Teknova) into 96 deep
well plates containing 1mL LB media (Teknova). The culture plates were grown overnight in
a 30 °C shaker incubator. 200 ul of overnight culture was transferred into new 96 well plates
(Labcon) and spun down at 3,500 g. A portion of the pelleted material was transferred into
96 well PCR (Thermo-Fisher) plate via pinner (Fisher Scientific) which contained reagents
for performing an initial phase PCR of a two-phase PCR for addition of Illumina adapters
and sequencing. Reaction volumes used were 25 pl. During the initial PCR phase partial
Illumina adapters were added to CDRH2 and CDRH3 amplicon via 4 PCR cycles. The
second phase PCR added the remaining portion of the Illumina sequencing adapter and the
Illumina i5 and i7 sample indices. The initial PCR reaction used 0.45 uM UMI primer
concentration, 12.5 ul Q5 2x master mix (NEB). Reactions were initially denatured at 98 °C
for 3 min, followed by 4 cycles of 98 °C for 10 s; 59 °C for 30 s; 72 °C for 30 s; with a final
extension of 72 °C for 2 min. Following the initial PCR, 0.5 uM of the secondary sample
index primers were added to each reaction tube. Reactions were then denatured at 98 °C for
3 min, followed by 29 cycles of 98 °C for 10 s; 62 °C for 30 s; 72 °C for 15 s; with a final
extension of 72 °C for 2 min. Reactions were then pooled into a 1.5 mL tube (Eppendorf).
Pooled samples were size selected with a 1x AMPure XP (Beckman Coulter) bead
procedure. Resulting DNA samples were quantified by Qubit fluorometer. Pool size was
verified via Tapestation 1000 HS and was sequenced on an Illumina MiSeq Micro (2x150 nt)
with 20 % PhiX.

After sequencing, amplicon reads were merged corresponding to their sample indices.
Merging was performed by custom Python scripts. Scripts merged R1 and R2 reads based
on overlapping sequence. Instances of unique amplicon sequences within each sample were
counted and tabulated. Next, custom R scripts were applied to calculate sequence frequency
ratios and Levenshtein distance between dominant and secondary sequences observed within
samples. These calculations were used for quality filtering downstream to ensure clonal SPR
measurements. The dominant sequence within each sample was then combined with
companion Carterra SPR measurements.

QC SPR fits were excluded if any of the following criteria was satisfied:

e less than 3 analyte concentrations providing usable fits

e handling errors as noted by operator

e non-physical fits (such as an upward-sloping dissociation-phase signal, even after
sensorgram baseline subtraction)

e non-convergent fits
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a value of —log,; Kp < 8.5 coupled with an estimated signal-to-noise ratio, for the 759
highest analyte concentration ¢, included in the fit (typically 500 nM), of less than 10 zeo
e a value of —log,; Kp > 8.5 coupled with an estimated signal-to-noise ratio, for the 761

highest analyte concentration included in the fit, of less than 70 762
e a t. value, for the highest analyte concentration included in the fit, such that 763
te<—-300sort.>0s 764
e failed NGS 765
e non-clonal sequence (dominant sequence less than 100 times as abundant as secondary zes
sequence when the Levenshtein distance between the two is greater than 2) 767
e sequence does not match any designed variant in the synthesized oligo pool (within a  zes
sequence identity tolerance to accommodate sequencing errors) 760

Kp and kg were —log,, transformed, while k., was log,q transformed. Distributions 770
of kinetic parameters were visually inspected for absence of significant batch effects. ™
Multiple measurements of the same antibody variant (usually (a) duplicate serial 772
measurements of the same clone in the same SPR run; (b) technical replicates of the same 773
clone from duplicate 384-well plates measured in separate runs; (¢) two DNA variants with 77a
identical translation, when available; and (d) independent clones of a variant) were averaged 775

in log space. Variants whose —log,, Kp measurements showed a coefficient of variation 776
greater than 5 % upon aggregation were dropped. 777
Observed Antibody Space (OAS) database processing 778

We downloaded the OAS database [49] of unpaired immunoglobulin chains on February 1st, 7o
2022. From the full database, the following exclusions were applied to the raw OAS data:  7s0

first, studies whose samples come from another study in the database (Author field 781
Bonsignori et al., 2016, Halliley et al., 2015, Thornqvist et al., 2018); 782
second, studies originating from immature B cells (BType field Immature-B-Cells and 783
Pre-B-Cells) and B cell-associated cancers (Disease field Light Chain Amyloidosis, 784
CLL); and finally, sequences were excluded if any of the following criteria was met: 785
e Sequence contains a stop codon 786
e Sequence is non-productive 787
e V and J segments are out of frame 788
e Framework region 2 is missing 780
e Framework region 3 is missing 790
e CDR3 is longer than 37 amino acids 701
e J segment sequence identity with closest germline is less than 50 % 702
e Sequence is missing an amino acid at the beginning or at the end of any CDR 703
e Conserved cysteine residue is missing 794
e Locus does not match chain type 795

From the resulting sequences, and for each of the two (heavy/light) chains, two types of 7zes

subsequences were extracted: “CDR” and “near-full length (NF)”. In CDR datasets, we 707
extracted only the CDR1, CDR2 and CDR3 segments as defined by the union of the 708
IMGT [50] and Martin [51] labeling schemes. In NF datasets, we included IMGT positions 7ee
21 through 128 (127 for light chains and for heavy chains from rabbits and camels). 800

In all four datasets, duplicated sequences were removed, while tabulating the redundancy soa
information (i.e. the number of times a specific sequence was observed in each study). 802
Sequences with a redundancy of one (i.e., observed only once in a single study) were 803
dropped on the grounds of insufficient evidence of genuine biological sequence as opposed to  soa
sequencing errors. 805
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A flow chart with the number of sequences filtered out and retained after each 806
pre-processing step is shown in fig. 807
Model architecture s0s

Protein language models have shown great promise across a variety of protein engineering  sos
tasks [17,[52H56]. Our architecture is based on the RoOBERTa model [57] and its PyTorch s

implementation within the Hugging Face framework [58]. 811

The model contains 16 hidden layers, with 12 attention heads per layer. The hidden 812
layer size is 768 and the intermediate layer size is 3072. In total, the model contains 114 813
million parameters. In a pilot study, we tested larger and smaller models and compared 814
their losses in both a masked language modeling task and a regression task. We noticed that s
smaller models underperformed whereas larger models did not provide significant 816
performance boost, confirming that the selected model size was appropriate. 817
Model training a1
Pre-training with OAS antibody sequences All models for predicting binding affinity sie
presented in this study were derived from RoBERTa architectures pre-trained on 820
immunoglobulin sequences from the four datasets resulting from the OAS database 821
processing (see |Observed Antibody Space (OAS) database processing| above). Thus, four 822
models were trained with heavy or light chain, CDR or NF sequences. All training 823
sequences contained species tokens (e.g. h for human, m for mouse, etc) for conditioning the sza
language model [59]. In addition, input sequences to CDR models contained 825
CDR-delimiting tokens so that the originally discontinuous CDR segments could be 826
concatenated into a single input sequence. 827

CDR models were used for all binding affinity and predictions, except for the szs
CR9114 case study for which NF models were used due to framework mutations. 820

Model training was performed in a self-supervised manner [49], following a dynamic 830
masking procedure, as described in Wolf et al. [57], whereby 15 % of the tokens in a 831
sequence are randomly masked with a special [MASK] token. For masking, the 832
DataCollatorForLanguageModeling class from the Hugging Face framework was used 833
which, unlike Wolf et al. [57], simply masks all randomly selected tokens. Training was 834

performed using the LAMB optimizer [60] with € of 10=¢, weight decay of 0.003 and a clamp 3
value of 10. The maximum learning rate used was 10~3 with linear decay and 1000 steps of s
warm-up, dropout probability of 0.2, weight decay of 0.01, and a batch size of 416. The 837

models were trained for a maximum of 10 epochs. 838
Fine-tuning with affinity data Transfer learning was used to leverage the 830
OAS-pre-trained model by adding a dense hidden layer with 768 nodes followed by a 840
projection layer with the required number of outputs. All layers remained unfrozen to 841
update all model parameters during training. Training was performed with the AdamW 8a2
optimizer [61], with a learning rate of 107>, a weight decay of 0.01, a dropout probability of sas
0.2, a linear learning rate decay with 100 warm up steps, a batch size of 64, and 8aa
mean-squared error (MSE) as the loss function. 845

All models were trained for 25,000 steps. The number of steps, batch size, and learning  sae
rate for all runs were determined through a hyperparameter sweep using a pilot dataset. A  sar
grid search was run across three learning rates (10~%, 107°, 107°), three batch sizes (64, 848
128, 256), and two numbers of steps (25,000, 50,000). Each hyperparameter set was used to sas
fine-tune the OAS pre-trained RoOBERTa model using a 90:10 train:hold-out split from a 850
pilot dataset (fig.[S28A), and from a subset of 500 randomly selected sequences from the 851
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pilot dataset (fig.[S28B). To minimize model training time while maintaining model
performance, the final hyperparameters were 10~° for learning rate, a batch size of 64, and
25,000 training steps.

Co-training with ACE and SPR data We designed a model to predict both ACE- and
SPR-derived binding affinities from sequences, using a weighted sum of the mean squared
errors for each regression task as the loss function. Loss weights were inversely proportional
to the dataset size. All models were evaluated using pooled out-of-fold predictions in a
10-fold cross-validation setting.

Model characterization

Baselines To assess the effectiveness of fine-tuning a pre-trained model, two baselines
were evaluated.

First, a RoOBERTa model with the same architecture as the pre-trained models was
trained with affinity data starting from randomly initialized weights (no OAS pre-training).
Second, an XGBoost [62] model was implemented using a one-hot encoding of amino
acids. The following XGBoost hyperparameters were selected using a grid search on a pilot

dataset: eta=0.05, gamma=0, n_estimators=1000, subsample=0(.6, max_depth=9,
min_child_weight=1, col_sample_by_tree=1 (fig. . Default values were used for all
other hyperparameters.

Out-of-distribution predictions of binding affinity To evaluate the predictive power
for binding affinities outside of the distribution seen in the training set, we fine-tuned a
model by excluding any variant with —log;, Kp higher than that of parental trastuzumab
from the training set. We then tasked the model with predicting affinities of a set of
sequences highly enriched in binders stronger than trastuzumab as validated by SPR.

Assessing the size and fidelity of training data Models were trained using subsets of
different sizes from datasets of varying fidelity. The trast-3 dataset was treated as the
high-fidelity dataset. The low-fidelity dataset was generated by isolating a single DNA
variant for each sequence from a single FACS sort, using the same workflow.
Each training dataset was evenly split into 1, 2, 4, 8, 16, 32, 64 and 128 subsets, respectively.
Each training subset was used to both directly train a model with randomly initialized
weights, and to fine-tune the OAS pre-trained model. A common hold-out dataset
containing 10 % of data from the original trast-3 dataset was used to evaluate all models,
regardless of data source or training set size. These sequences were removed from both
datasets before constructing the training subsets.

Embeddings Embeddings were generated by taking the mean pool of activations from
the last hidden layer of the model, head excluded. The resulting size of the embedding of
each sequence was 768. The dimensionality of embeddings was reduced with the Uniform
Manifold Approximation and Projection (UMAP) algorithm as implemented in the RAPIDS
library [63].

In a first investigation, we compared embeddings from four different models, resulting
from presence or absence of OAS pre-training and presence or absence of binding affinity
fine-tuning using the trast-2 dataset.

In a second investigation, embeddings were leveraged to cluster variants close in internal
representation space. To this aim, dimensionality-reduced embeddings were filtered to retain
only strong binders based on predicted ACE scores and 3D embeddings were clustered using
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HDBSCAN [64], with a minimum cluster size of 40 sequences. Sequence logo plots for each
cluster were generated using Logomaker [65].

Epistasis

Epistatic interactions between mutations were assessed by considering the predicted affinity
scores for the double mutant, the constituent single mutants, and the parental antibody
sequence. Specifically, the epistatic effect between two mutations, m; and mq, was
calculated as:

Epistasis(mi,m2) = (Y12 — Ywt) — (Y1 — Ywt) — (Y2 — Yuwt)

where y; denotes the predicted ACE score for the mutant with mutation(s) ¢, or the
parental sequence in the case of y,:.

Antibody naturalness

We define the naturalness ng of a sequence as the inverse of its pseudo-perplexity according
to the definition by Salazar et al. [66] for masked language models (MLMs). Recall that, for
a sequence S with IV tokens, the pseudo-likelihood that a MLM with parameters © assigns
to this sequence is given by:

PLL(S) =S P (t|S\; ©)

The pseudo-perplexity is obtained by first normalizing the pseudo-likelihood by the
sequence length and then applying the negative exponentiation function:

PPPL(S) = exp(—ﬁPLL(S))

Thus, the sequence naturalness is:
ns = pppreey = @P(siPLL(S))

Naturalness scores were computed using the two pre-trained models described above (see
[Pre-training with OAS antibody sequences)). Several antibody properties (immunogenicity,
developability, expression level, and mutational load) were analyzed to investigate a potential
relationship with sequence naturalness. For datasets in which antibodies exhibit variation in
both chains (immunogenicity and expression level), the reported naturalness score was the
average of the individual heavy- and light-chain scores. For datasets in which antibodies
exhibit variation only in the heavy chain (developability and mutational load), only the
heavy-chain naturalness score was computed. In all cases, we report naturalness scores from
models trained on CDR datasets (see [Pre-training with OAS antibody sequences)).

To assess the relationship between naturalness and antibody properties of interest, we

binned naturalness values into four equally spaced intervals (low, low-mid, mid-high, high).

For each naturalness bin, we plotted the property of interest using boxplots (continuous
properties) or barplots (binary properties). For boxplots, we set the whisker parameter to
1.5 and did not show outliers. The rationale for binning continuous variables was to reduce
the impact of outliers and noisy data points. To assess statistical significance, we computed
the Jonckheere-Terpstra test for trends.
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Immunogenicity

We obtained immunogenic responses, reported as percent of patients with anti-drug antibody
(ADA) responses, from Marks et al. [29]. Of all classes of antibodies (human, humanized,
chimeric, hybrid, mouse), only humanized antibodies were included in our analysis because
(1) inter-class comparisons are trivial, amounting to simple species discrimination, while
intra-class comparisons are both challenging and practically relevant; (2) humanized
antibodies represent the largest class (n=97) in this dataset, thereby providing the greatest
statistical power; and (3) compared to the second largest class in the dataset (human
antibodies) humanized antibodies have in principle more immunogenic potential due to the
animal origin of their CDRs, thereby providing a practically relevant case study to assess
the degree of human naturalness achieved upon engineering/humanization.

Developability

Sequence developability was defined as a binary variable indicating whether an antibody
sequence fails at least one of the developability flags computed by the Therapeutic Antibody
Profiler (TAP) tool [32]. See the subsection for a detailed definition of these
flags.

We scored hits (positive enrichment in round 3 compared to round 2, heavy-chain
sequences, n—==882) from the phage display library described in Liu et al. [30], which we refer
to as the Gifford Library).

We also analyzed trastuzumab variants with up to 3 simultaneous amino-acid
replacements in 10 positions of CDRH2 and 10 positions of CDRH3 (according to the same
mutagenesis strategy of the trast-3 dataset).

Processing of the Gifford Library dataset We obtained phage display data from the
Gifford Library described in Liu et al. [30]. Specifically, we downloaded the raw FASTQ files
for rounds 2 (E1_R2) and 3 (E1_R3) of enrichment from the NIH’s Sequence Read Archive
(SRA) under accession number SRP158510.

We then followed the guidelines for processing the data as per Liu et al. [30]. First, the
flanking DNA sequences of TATTATTGCGCG and TGGGGTCAA were used to pull the CDRH3
sequences. Then, sequences that included N or cannot be translated (divisible by 3) were
excluded. Next, DNA sequences were translated into protein sequences, and were dropped if
they contained a premature stop codon. Then, CDRH3 sequences shorter than 8 or longer
than 20 amino acids were filtered out. Lastly, the number of occurrences of each unique
sequence was determined, and sequences occurring less than 6 times were considered noise
and dropped.

TAP analysis We used the Therapeutic Antibody Profiler (TAP), described in Raybould
et al. [32] to calculate developability scores. We used a commercially licensed virtual
machine image of the tool, which was last updated on February 7" 2022.

TAP calculates five developability metrics: Total CDR Length, Patches of Surface
Hydrophobicity (PSH), Patches of Positive Charge (PPC), Patches of Negative Charge
(PNC), and Structural Fv Charge Symmetry Parameter (SFvCSP). Furthermore, it
generates flags for whether or not the metric is acceptable relative to a reference set of
therapeutic antibodies. Metrics that fell outside the reference distribution are flagged as
"red", whereas metrics that fall within the most extreme 5 % of the distribution are
"amber", and metrics that fall in the main body of the distribution past the 5 % threshold
are "green" and acceptable.
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Using TAP, we analyzed sequence hits from the Gifford Library dataset as well as
trastuzumab variants. TAP flags were used determine if an antibody had acceptable
developability scores. An antibody variant was considered a failure if at least one of the
TAP flags was not green.

Antibody expression in HEK-293 cells

We collected clinical-stage antibody expression levels in HEK-293 cells from Jain et al. [31].
The dataset was heterogeneous with regard to antibody type (e.g., human, humanized,
chimeric, etc). For the same reasons illustrated for immunogenicity, we focused on
humanized antibodies (n=67).

In addition to HEK-293 titer, Jain et al. reported additional biophysical measurements.
We did not find associations between naturalness score and biophysical parameters other
than titer. However, we note that a dataset of clinical-stage antibodies is necessarily already
biased towards antibodies endowed with favorable properties, meaning that distributions of
biophysical parameters are strongly depleted of poorly performing antibodies. The
availability of positive but not negative examples severely limits the ability to detect
associations between biophysical parameters and other metrics such as naturalness.

Mutational load

Mutational load was defined as the number of amino acid substitutions in an antibody
variant compared with its parental sequence. We analyzed the distribution of naturalness
scores across 6,710,400 trastuzumab variants with mutational load between 1 and 3 (10
positions in CDRH2 and 10 positions in CDRH3, allowing all natural amino acids except
cysteine). We assessed the statistical significance of differences in naturalness score
distributions by mutational load using the Jonckheere-Terpstra test for trends.

Genetic algorithms

To generate sequence variants with desired properties (e.g., high/low /target ACE score and
high naturalness), we developed a genetic algorithm (GA) using a tailored version of the
DEAP library in Python [67]. In this GA, each individual sequence variant was reduced to
its CDR representation described above (union of IMGT and Martin definitions). Each GA
run was initialized from a single trastuzumab sequence. The predicted ACE and naturalness
scores of each sequence were evaluated using the models described above. A cyclical
select-reproduce-mutate-cull process was applied to the starting sequence pool that is
common in g+ A GAs [68].

Each offspring pool contained the original 100 parents, along with 200 new, unique
individuals. Of the offspring, 30 % were created from a single point mutation of a parent
(excluding cysteine), and 70 % were created from two-point crossovers between two parents.
Since the GA is initialized from a single sequence, the first offspring pool contained 299
individuals, all of which were created using single point mutations from trastuzumab. All
sequences were constrained to remain within the trast-3 library computational space (up to
triple mutants in 10 positions in CDRH2 and CDRH3, respectively). If a unique offspring
could not be produced within these constraints, a randomly generated individual within the
constraints was added to the offspring pool. Tournament selection without replacement
(tournament size = 3) was performed to cull the population (size = 300) and select the
individuals for the next generation (size = 100).

This process represented one “generation” of the GA, which was always run for 20
generations. To properly balance between the ACE score and naturalness objectives, the
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fitness objective was defined as: 1023
naturalness)®
Fitness = ( )
|ACE score — ACE target|
To test the generative capabilities of our models, the GA was run in the following 1024
configurations: 1025
e Target ACE score = 9 (maximize ACE score), while maximizing naturalness 1026
e Target ACE score = 1 (minimize ACE score), while maximizing naturalness 1027
e Target ACE score = 6, while maximizing naturalness 1028

Since the GA queries 300 individuals in the first generation, and 200 individuals in each 1020
subsequent generation, the GA queries 4,100 (non-unique) sequences across 20 generations. 130
As a baseline, we randomly selected 4,100 sequences from the full mutational search space, 1031
and selected the top 100 individuals with the highest fitness as described above. The fitness 1032
function was also used to identify the top 100 individuals from the exhaustive search of the 1033
mutational space and from the trast-3 dataset. 1034
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