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Abstract

Traditional antibody optimization approaches involve screening a small subset of the
available sequence space, often resulting in drug candidates with suboptimal binding affinity,
developability or immunogenicity. Based on two distinct antibodies, we demonstrate that
deep contextual language models trained on high-throughput affinity data can quantitatively
predict binding of unseen antibody sequence variants. These variants span a KD range of
three orders of magnitude over a large mutational space. Our models reveal strong epistatic
effects, which highlight the need for intelligent screening approaches. In addition, we
introduce the modeling of “naturalness”, a metric that scores antibody variants for similarity
to natural immunoglobulins. We show that naturalness is associated with measures of drug
developability and immunogenicity, and that it can be optimized alongside binding affinity
using a genetic algorithm. This approach promises to accelerate and improve antibody
engineering, and may increase the success rate in developing novel antibody and related
drug candidates.
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Introduction 1

Despite billions of dollars of investment every year, only an estimated 4 % of drug leads 2

succeed in their journey from discovery to launch [1]. Even worse, only 18 % of drug leads 3

that pass preclinical trials eventually pass phase I and II trials, suggesting that most drug 4

candidates are unsafe or ineffective [2]. While much of this failure rate is attributable to 5

incomplete understanding of the underlying biology and pathology, insufficient drug lead 6

optimization contributes to a large number of failures [3]. 7

Traditional antibody screening approaches can only explore small regions of the sequence 8

space. This may constrain results to sequences with suboptimal properties such as 9

insufficient binding affinity, developability limitations, and poor immunogenicity profiles [4]. 10

By contrast, deep mutagenesis coupled with screening or selection allows for the exploration 11

of a larger antibody sequence space, potentially yielding more and better drug leads [5]. 12

However, deep mutagenesis comes with its own challenges. For example, most mutations 13

degrade the binding affinity of antibodies rather than improve it, which greatly reduces 14

screening efficiency. Moreover, the size of the antibody sequence variant space grows 15

exponentially with mutational load (i.e. the number of mutations simultaneously introduced 16

into each sequence variant) and quickly exceeds the capacity of experimental assays by 17

orders of magnitude. In addition, most antibody screening approaches are limited to 18

screening only one property at a time, restricting the simultaneous optimization of drug 19

potency and developability. Because improving a property may negatively impact others, 20

simultaneous, rather than sequential, optimization of antibody properties is a preferable 21

therapeutic strategy [6]. 22

Deep neural networks are an emerging tool that can help overcome the limitations of 23

experimental screening capacity [7]. The general approach involves training a model on 24

experimental data and applying it to predict which sequences are most likely to improve the 25

measured trait. Several promising approaches have been proposed [8–14], but only two 26

studies have had in silico predictions validated in the lab [15,16]. While being valuable 27

demonstrations, previous models are limited by throughput and the use of binary (rather 28

than continuous) readouts, which can compromise their accuracy at high mutational loads. 29

In this study, we demonstrate our capability to improve the binding affinity of an 30

antibody for its target antigen using deep contextual language models and quantitative, 31

high-throughput experimental binding affinity data. We show that models can 32

quantitatively predict binding affinities of unseen antibody variants with high accuracy, 33

enabling virtual screenings and augmenting the accessible sequence space by orders of 34

magnitude. In this sense, the trained learner can serve as an oracle, assigning functional 35

annotations from just sequence [17,18]. We confirm predictions and consequent designs in 36

the lab, with a much higher success rate than would be attained with traditional screening. 37

An additional concern for antibody screening approaches is that the improvement of 38

binding affinity can negatively affect developability and immunogenicity properties [19]. 39

This issue would remain unaddressed by machine learning models trained to optimize 40

affinity without regard for other properties. Here we introduce natural antibody sequences 41

into our language models, allowing us to characterize the naturalness of any given sequence 42

for a host species. We find that high naturalness scores are associated with improved 43

immunogenicity and developability metrics, thereby highlighting the importance of 44

simultaneously optimizing multiple antibody properties during drug lead screening. To 45

address this task, we present a genetic algorithm for the efficient identification of sequences 46

with both strong binding affinity and high naturalness. 47
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Results 48

Deep language models can predict binding affinity of sequence 49

variants 50

We hypothesized that artificial intelligence (AI) models based on deep neural networks could 51

learn the mapping between variants of a biological sequence (such as an antibody) and 52

quantitative readouts (such as binding affinity) from experimental data. With this 53

capability, AI models could be used to simulate experiments in silico for novel sequences, 54

thereby accessing more variants with improved properties at a lower cost (fig. 1). 55

Figure 1. AI-augmented antibody optimization. Deep learning models fed with ACE
or SPR measurements can quantitatively predict affinities of novel sequence variants, thereby
enabling the in silico design of antibodies with desired binding properties.

Training of deep learning models requires large, high-quality datasets. To generate 56

high-throughput measurements of antibody binding affinities, we developed the 57

Activity-specific Cell-Enrichment (ACE) assay (fig. S1), a method based on 58

Fluorescence-Activated Cell Sorting (FACS) and Next-Generation Sequencing (NGS). The 59

assay is an improved version of our prior work [20]. The ACE assay leverages intracellular, 60

soluble overexpression of folded antibodies in the SoluProTM E. coli B Strain. Cells 61

expressing antibody variants are fixed, permeabilized and stained with fluorescently-labeled 62

antigen and scaffold-targeting probes. Cells are then binned and sorted based on binding 63

affinity and expression level of variants. Finally, the collected DNA sequences are amplified 64

via PCR and sequenced. ACE scores are calculated from sequencing read counts (See 65

Methods) and are proportional to binding affinities. 66

In order to assess whether the sequence-affinity relationship can be modeled and 67

predicted, we generated variants of the HER2-binding antibody trastuzumab in Fragment 68

antigen-binding (Fab) format. Mutagenesis of CDRH2 and CDRH3 was prioritized as these 69

regions accommodate the highest density of paratope residues, both in general and for 70

trastuzumab [21,22]. Across this study, up to five simultaneous amino acid substitutions 71

were introduced randomly in the parent antibody, in up to two CDRs, allowing all natural 72

amino acids except cysteine (excluded to avoid potential disulfide bond-related liabilities). 73

Table 1 summarizes the datasets used to train models. 74

In addition to high-throughput (HT) ACE data, we also leveraged low-throughput, but 75

highly accurate SPR KD readouts to assess binding affinity. SPR was used for (i) targeted 76
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Dataset trast-1 trast-2 trast-3

Screening ACE SPR ACE

Mutated CDRH2 positions - - 10 (55-66)

Mutated CDRH3 positions 8 (107-114) 8 (107-114) 10 (107-116)

Mutational load Up to double
mutations

Up to double
mutations

Up to triple
mutations

Allowed natural AAs 19 (no Cys) 19 (no Cys) 19 (no Cys)

Combinatorial space 9,217 9,217 6,710,401

Design Random* Uniform** Random, stratified***

# Measured AA variants 8,932 215 52,596

0 1 1 1

Number of 1 142 23 315

mutations in 2 8,789 191 4,054

AA variants 3 - - 44,704

4 - - 1,992

5 - - 1,530

Table 1. Trastuzumab variant datasets. Characteristics of datasets used to train
and evaluate models. The positions hosting substitutions (IMGT numbering), number of
simultaneous substitutions (mutational load), and allowed amino acids (all except cysteine)
define the combinatorial sequence space. A subset of sequences was sampled from the
combinatorial sequence space according to the indicated design strategy to build libraries
for screening by the ACE assay or SPR. The numbers of QC-passing amino acid sequence
variants upon screening and analysis are shown, broken down by mutational load. * Random
sampling of combinatorial space. ** Uniform sampling by affinity from the trast-1 dataset.
*** Random sampling of combinatorial space per mutational load bin, with defined prevalence
ratios of mutational load bins. Quadruple and quintuple mutants were used only to assess
the performance of predictions from models trained with up to triple mutants.

re-screening of sequence variants upon primary screening with the ACE assay; and (ii) to 77

validate model predictions. 78

As a proof of concept for our workflow, we created a library containing all sequence 79

variants with up to two mutations across eight positions of trastuzumab CDRH3 (fig. 2A). 80

Using the ACE assay, we measured the binding affinity of 8,932 variants (97 % of the 81

combinatorial space) to create the trast-1 dataset (table 1). We trained a deep language 82

model using 90 % of the trast-1 dataset and evaluated the model predictions using the 83

remaining 10 % as hold-out data. The measured and predicted ACE scores for the hold-out 84

dataset were highly correlated, indicating that the language model could predict binding 85

affinity with high accuracy (fig. 2B). 86

Inaccuracy in predictions is affected by both modeling errors and experimental noise. To 87

disentangle these two effects, we looked at the agreement between measurement replicates 88

using the same metrics we previously used to assess the predictive performance of our 89

models (fig. S2A). Evaluating the model performance relative to the agreement of 90

measurement replicates indicated that most of the prediction error could be attributed to 91

experimental noise (fig. 2C, fig. S2B). 92

The hold-out set evaluated in fig. 2B was randomly drawn from the trast-1 dataset. 93

Therefore, training and hold-out sets had similar distributions of ACE scores, with a 94
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Figure 2. Deep language models trained with the ACE assay generated trast-1
dataset quantitatively predict antibody binding affinity. (A) Illustration of the
combinatorial mutagenesis strategy of the trast-1 dataset: up to double mutants in 8 positions
of the CDRH3 of trastuzumab, screened using the ACE assay. (B) Predictive performance
of a model trained on ACE assay scores of variants from 90 % of trast-1, evaluated on the
remaining 10 % of sequences. (C) Comparative analysis of replicate ACE assay measurements
and ACE assay scores predicted from models trained on individual ACE assay replicates.
Error bars are 95 % confidence intervals. (D) Correlation between ACE assay affinity score
and log-transformed SPR KD measurements. Plot shows ACE assay scores from trast-1 for
sequence variants intersecting with trast-2. (E) Predictive performance against a hold-out set
uniformly distributed with respect to binding affinity (ACE scores from trast-1 for sequences
shown in panel D).
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prevalence of low-affinity binders due to the detrimental effect of most mutations. This 95

design of training and hold-out sets addressed the question of whether models can simulate 96

experiments in silico. A more challenging test would involve assessing predictions using a 97

hold-out set distributed uniformly with respect to binding affinities. This hold-out set would 98

be enriched in strong binders relative to the training set. To reduce the prevalence of weak 99

binders in this new hold-out set, we sampled >200 sequences from the trast-1 dataset. The 100

sampled sequences were rescreened by SPR to create the trast-2 dataset (table 1). As 101

expected, we observed strong agreement between ACE scores and SPR-derived − log10 KD 102

values of trast-2 sequences (fig. 2D), and confirmed the near-uniform distribution of binding 103

affinities for this dataset. We then used the trast-2 sequences as a hold-out set for models 104

trained with trast-1 ACE scores, which confirmed strong predictive performances (fig. 2E). 105

Since we collected SPR measurements for the trast-2 dataset (fig. 2D), we investigated 106

whether this dataset alone was sufficient to train a deep language model to directly predict 107

equilibrium dissociation constants. Due to the relatively small size of the dataset (n=215), 108

all models were trained using 10-fold cross-validation and model performance was evaluated 109

using pooled out-of-fold predictions. We first trained a model to predict − log10 KD values, 110

and found that the correlation between measured and predicted values was slightly lower 111

than that observed with the high-throughput trast-1 dataset (fig. 3A). However, 87 % of 112

predicted binding affinities deviated by less than half of a log from their respective measured 113

values. As in the case of trast-1, we also evaluated the trast-2 results relative to the best 114

possible performance defined as the degree of agreement between measurement replicates 115

(fig. 3B, fig. S3A-B). 116

In addition to equilibrium binding constants, SPR provides association (kon) and 117

dissociation (koff ) coefficients. Models trained to predict these coefficients also performed 118

well (fig. 3C-D, figs. S4 and S5), opening the possibility for AI to aid the specific engineering 119

of association and dissociation properties, in addition to the overall binding affinity. Note 120

that the lower correlation coefficient observed for kon was due to the small range of 121

observed variation. Similarly, the agreement of measurement replicates was also lower for 122

kon than for koff , which further underscores the need to consider measurement noise when 123

assessing prediction performances. 124

Finally, we asked whether a model simultaneously trained with two affinity data types 125

could improve the performance compared to a model fed with just a single data type. For 126

this, we supplemented the trast-2 model with trast-1 ACE assay data, using a multi-task 127

training setting. We found that this model slightly out-performed the original model trained 128

only on trast-2 SPR data (fig. S6). 129

All models trained on the trast-1 and trast-2 datasets were deep language models 130

pre-trained on immunoglobulin sequences from the OAS database (see Methods). We 131

compared these models against baselines, either using a 90:10 train:hold-out split from the 132

trast-1 dataset or a pooled 10-fold cross-validation from the trast-2 dataset. For the first 133

baseline, we trained a deep language model with an identical architecture but no 134

pre-training (i.e. randomly-initialized weights) to evaluate the impact of transfer learning. 135

For the second baseline, we trained gradient boosted trees using the XGBoost package [23] 136

to determine if deep language models boosted predictive accuracy relative to “shallow” 137

machine learning. The pre-trained model out-performed both baselines for both the trast-1 138

and trast-2 datasets (fig. S7), with a stronger benefit seen for the smaller trast-2 dataset, in 139

line with previous observations [24]. 140

To understand why pre-training improves model performance, we inspected model 141

embeddings from all combinations of pre-training vs. no pre-training, and fine-tuning vs. no 142

fine-tuning (fig. S8). Even without fine-tuning, embeddings from OAS pre-training appear 143

to have structure, with distinct patches enriched for high (or low) binding affinities. This 144

organization simplifies subsequent fine-tuning with binding data, such that the model 145
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Figure 3. Deep language models trained with the SPR-generated trast-2 dataset
quantitatively predict antibody binding affinity. Performance is evaluated by pooled
10-fold cross-validation. (A) Predictions from a model trained on SPR-measured − log10 KD

values. (B) Comparative analysis of replicate − log10 KD measurements and − log10 KD

predicted from models trained on individual SPR replicates. Error bars are 95 % confidence
intervals. (C) Predictions from a model trained on log10 kon values. (D) Predictions from a
model trained on − log10 koff values.

weights could be more easily updated to provide enhanced binding affinity predictions. 146

Model-guided design of improved antibody variants 147

Having demonstrated AI prediction performances using hold-out sets and cross-validation, 148

we moved to using models to design sets of sequences with desired binding properties 149

followed by validation with dedicated SPR experiments. 150

To begin, we tasked a model trained on the trast-2 dataset with designing 50 sequences 151

spanning two orders of magnitude of equilibrium dissociation constants (design set A). This 152

model-enabled design involved exhaustively making predictions for all variants in the 153

combinatorial sequence space, followed by sampling of sequences with predicted binding 154

affinities consistent with requirements. We found an excellent agreement between the 155
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predictions and validations for the design set A (fig. 4A, fig. S9A-B). 156

A B

C D

Figure 4. Deep language models trained with the SPR-generated trast-2 dataset
can design unseen sequence variants that validate in independent SPR experi-
ments. (A) Density plot of predicted (Design) and measured (Validation) binding affinities
of 50 sequences designed to span about 2 orders of magnitude of KDs (set A). (B) Density
plot of predicted (Design) and measured (Validation) binding affinities of 50 sequences
designed to bind HER2 more tightly than parental trastuzumab (set B). (C) Empirical distri-
bution function (ECDF) of the measured (Validation) binding affinities of the 50 sequences
from design set B. Lines indicate the measured − log10 KD of trastuzumab (or deviations
by -0.1 or -0.5 log). (D) Density plot of binding affinities from set B as predicted by a
model trained with the full trast-2 dataset as in panel B (Design, original predictions) or as
re-predicted (Design, predictions with KD-capped training) by a model trained on a trast-2
dataset version depleted of any variant binding more strongly than parental trastuzumab
(Training, KD-capped).

We then considered a more challenging case, the design of variants with tighter binding 157

than trastuzumab (design set B). As in the previous design, we validated 50 sequences by 158

SPR and found that 74 % of variants were indeed tighter binders than the parental antibody 159

(fig. 4B-C), and 100 % complied with the design specification within a tolerance of 0.5 log 160

(fig. 4C, fig. S9C). This performance is competitive when considering replicate SPR 161
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measurements; a similar fraction of top binders from one replicate pass the threshold in the 162

next (fig. S9D). 163

Because of the small − log10 KD range spanned in this design, correlation between 164

predictions and measurements was low (fig. S9C). As similarly observed in kon modeling 165

(fig. S4), if the affinity range is narrow, even measurement replicates correlate poorly with 166

each other (fig. S9D). In contrast to correlation, other metrics, such as RMSE and the 167

fraction of predictions deviating less than 0.5 log from measurements, remained in line with 168

previously observed performance (fig. S9C). These metrics are generally more informative 169

when considering sequences within a narrow affinity range. 170

The validation results for design set B compare very favorably against a naive, 171

wet-lab-only approach to library screening, in which the fraction of binders tighter than 172

trastuzumab is minimal (fig. S10). The strong enrichment for variants of interest provided 173

by AI models can thus greatly facilitate antibody optimization (fig. 1). 174

As mentioned above, the model used to design sequence set B was trained on the trast-2 175

dataset, which included some binders stronger than trastuzumab (fig. 3A). We investigated 176

whether a model that was never fed any sequence as extreme (affinity-wise) as those it was 177

tasked to design could still prioritize top binders. This question is of practical value, as 178

some campaigns may start from training sets devoid of high-affinity sequences. To test the 179

performance of our models in out-of-distribution affinity prediction, we dropped those 180

sequences with higher affinity than trastuzumab from the trast-2 training set. We then 181

trained a model using the remaining data and predicted the affinity of sequences in the 182

design set B. We found that the model was no longer able to make accurate KD predictions 183

for design B. Nonetheless, the model did place the binding affinities of design B variants at 184

the top of its predictive distribution (fig. 4D). This result demonstrates that AI can enable 185

the prioritization of high-affinity sequences even if laboratory experiments generating 186

training data did not span the full affinity range. 187

AI predictive performance is maintained when scaling to a larger 188

sequence space 189

To evaluate the accuracy of predictions in a large sequence space, we performed 190

combinatorial mutagenesis of up to three simultaneous mutations in CDRH2 and CDRH3, 191

ten positions each. We constructed a library by sampling less than 1 % of this sequence 192

space, and measured the binding affinity of the sampled sequence variants using the ACE 193

assay (trast-3, table 1, fig. 5A). We then trained a model using 80 % of the trast-3 data, and 194

evaluated its performance on the remaining 20 % of hold-out sequences. The model 195

predictions were accurate (fig. 5B). As a negative control, we confirmed that a model 196

trained on a dataset with randomly shuffled ACE scores had no predictive power (fig. S11). 197

Since the trast-3 sequence space is vast and we routinely observe a high correlation between 198

ACE scores and SPR-measured − log10 KD values (e.g., fig. 2D), models were trained and 199

evaluated directly on ACE data. 200

Given the predictive accuracy of the trast-3 model on variants with up to three 201

mutations away from the trastuzumab sequence, we tested whether the model could 202

accurately predict the ACE scores of variants with four or five mutations (fig. 5C). The 203

model predicted ACE scores of quadruple mutants (fig. S12A) with slightly lower (but still 204

actionable) accuracy than those of triple mutants. Although the prediction accuracy for 205

quintuple mutants was much lower (fig. S12B), the model could still discriminate between 206

high- and low-affinity binders. These results show that the triple mutant model can be 207

extrapolated to quantitatively predict binding scores for up to four simultaneous mutations, 208

and qualitatively predict binding scores for five mutations from the parental sequence. 209
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Figure 5. High-throughput binding scores from the ACE-generated trast-3
dataset can expand predictive capabilities to a larger mutational space. (A)
Illustration of the combinatorial mutagenesis strategy of the trast-3 dataset: up to triple
mutants in 20 positions (10 in CDRH2, 10 in CDRH3) of trastuzumab, screened using the
ACE assay. (B) Predictive performance of a model trained on the trast-3 dataset, with
20 % of data in the hold-out set. (C) Models trained on up to triple mutants were validated
against a hold-out set of up to triple mutants, and against hold-out sets of quadruple and
quintuple mutants, thereby extrapolating predictions to a higher mutational load than seen
in the training set. (D) Line plot showing model accuracy on a common hold-out validation
set across different training set sizes. Shaded regions indicate standard deviations across
folds. For each training subset size, we show the performance of the OAS pre-trained model
and a randomly-initialized model, each trained using subsets of the high-fidelity trast-3
dataset or a low-fidelity version of the dataset. Under each subset size, we report the fraction
of training data used, the size of the training dataset, and the fraction of the sequence space
covered by the training subset.
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Deep language models are highly sample efficient 210

The predictive power of any deep learning model is highly dependent on the quality and 211

quantity of its training data. The trast-3 dataset contains binding affinities for about 50,000 212

unique antibody sequences, covering 0.7 % of the complete combinatorial sequence space for 213

this design (table 1). To determine the relationship between model performance and the 214

quality and quantity of the training dataset, we trained a cohort of models to predict 215

affinity from a range of dataset sizes sampled from datasets of varying fidelity (fig. 5D). We 216

treated the original trast-3 dataset as a high-fidelity dataset, and created a low-fidelity 217

dataset by isolating a single DNA variant for each protein sequence from a single FACS sort 218

replicate (see Methods). The size of the training subsets ranged from 44,165 sequences (the 219

full training dataset), through 350 sequences (1/128 of the full training dataset), and models 220

were evaluated on a common hold-out validation dataset containing 10 % of all sequences in 221

the high-fidelity dataset. At each training subset size, we compared the performance of four 222

models: (1) OAS pre-trained models trained on a subset from the high-fidelity dataset; (2) 223

OAS pre-trained models trained on a subset from the low-fidelity dataset; (3) 224

randomly-initialized models trained on a subset from the high-fidelity dataset; and (4) 225

randomly initialized models trained on a subset from the low-fidelity subset. 226

As the size of the training dataset decreased, the model performance degraded. Models 227

trained on low-fidelity data consistently performed poorer than their counterparts trained 228

on high-fidelity data, highlighting the importance of high-quality experimental assays. 229

Pre-training the model with immunoglobulin sequences from the OAS dataset generally 230

improved its performance (fig. 5D). Given that the model required at least 2,760 sequences 231

to maintain a Pearson’s R above 0.8, it is impractical to model this (or larger) sequence 232

space using only SPR training data; higher-throughput assays such as the ACE assay are 233

required. 234

Since the Pearson correlation coefficient remained above 0.8 for all high-fidelity training 235

subsets covering at least 0.04 % of the potential search space, the model learned to predict 236

roughly 2,500 sequences for every sequence in the training set. Therefore, deep language 237

models can expand the search space of an experimental dataset by orders of magnitude. 238

Deep language models enable interpretable analysis of the antibody 239

binding landscape 240

Once trained, deep neural networks can be used as oracles to predict binding affinity scores 241

for all sequences within the combinatorial space matching the design of the training set. 242

Fast and accurate predictions of how antibody properties would be affected by sequence 243

engineering can help guide design strategies. 244

To gain insight into the binding landscape of trastuzumab variants, we exhaustively 245

evaluated the effect of all single, double and triple mutations in CDRH2 and CDRH3. 246

Trastuzumab has a high binding affinity for its target antigen HER2 (− log10 KD of 8.25 M 247

in Fab format, see fig. 3A). Thus, most mutations were predicted to have a detrimental 248

effect on the binding affinity (fig. 6). When considering multiple mutations, we also found 249

that most combinations were predicted to have a detrimental effect on the binding affinity 250

(fig. S13). In particular, positions 55, 107, 111, 112, and 113, were often predicted to have a 251

detrimental effect when mutated (fig. S13) and tended to interact epistatically with other 252

mutations. This pointed to a strong contribution to binding affinity from these residues, in 253

agreement with previous alanine scanning and structural studies [22]. 254

Analyzing the incremental effects of mutations across variants revealed that positions 59, 255

62, and 110 were relatively tolerant to mutations (fig. S13). This suggests that they make a 256

relatively small contribution to binding, and may offer ideal handles to optimize other 257

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.16.504181doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504181


antibody properties without perturbing affinity for the antigen. 258

Some single mutations in CDRH2, such as Y57D/E, N62E or T65D/E, were predicted to 259

increase binding affinity (fig. 6). Beyond single mutants, combining multiple mutations may 260

also provide improved high-affinity variants. In fact, as the mutational load increased, the 261

number of predicted high-affinity sequences increased, although their proportion was 262

reduced. For instance, 2 (0.56 %) of the single mutants, 192 (0.31 %) of the double mutants, 263

and 7,063 (0.11 %) of the triple mutants had high (>8.7) predicted ACE scores in the 264

trast-3 dataset. 265

We carried out a clustering analysis of model-derived embeddings of high-affinity 266

sequences (predicted ACE score >8.0). While the space of triple mutants offered many 267

potential high-affinity candidate sequences, these tended to form compact clusters involving 268

specific substitutions in a few positions, as shown in fig. S14. Notably, mutation Y57D/E 269

was observed in several clusters. Also, most high-affinity triple mutants had two or three 270

mutations in the CDRH2 (particularly in positions 57 and 62 or adjacent positions), while 271

fewer solutions involved one mutation in CDRH2 and two mutations in CDRH3. This 272

finding highlights the key role of the CDRH2 region in antigen binding by trastuzumab, as 273

also noted by others [22,25]. 274

We also found that the impact of a given mutation on binding affinity varied widely with 275

the presence of other mutations in the sequence, a phenomenon known as contingency [26]. 276

In fig. S13, we observed that a given mutation can have a larger, smaller, or even opposite 277

effect compared to the effect it would have on the parental trastuzumab sequence, 278

depending on the presence of just another single mutation. In the presence of two mutations, 279

the possible range of effects for an additional (third) mutation became wider (fig. S13). 280

In a similar vein, epistasis is the deviation from additivity in the effects of two 281

co-occurring mutations compared to their individual effects [27]. The epistatic interaction 282

between mutations for all double mutants of trastuzumab is depicted in fig. S15. Given the 283

negative effect that many mutations had on binding affinity, antagonistic, positive epistasis 284

is often observed (i.e., a double mutant displays a higher binding affinity than expected 285

based on its constituent single mutants). This is particularly evident in pairs of mutations 286

involving positions 55, 107, 111, 112, and 113, which are crucial to the binding affinity of 287

trastuzumab [22]. Epistatic interactions are also highly contingent on the presence of other 288

mutations in the sequence. The complex interaction between mutations directly affects the 289

biochemical properties of antibodies. 290

Taken together, the diversity of high-affinity sequences and their dilution as a function of 291

mutational load highlights the value of exhaustively evaluating the space of possible variants. 292

Such large-scale evaluation is only feasible with the help of computational models. Our 293

modeling results are in excellent agreement with previous functional and structural studies 294

and can provide unique insight on how mutations interact to shape the binding affinity of 295

antibodies. The pervasiveness of epistatic effects also highlights the need for flexible AI 296

models to accurately guide antibody optimization. 297

AI shows strong predictive performance on a second case study 298

involving simultaneous binding predictions for three antigen variants 299

Our modeling approach established with trastuzumab can be readily extended to other 300

antibodies. To demonstrate this, we leveraged public binding data of variants of the broadly 301

neutralizing (bn) antibody CR9114 (see Supplementary Information) [28]. Since the bnAb 302

CR9114 dataset provides binding data for three different influenza subtypes of the target 303

antigen hemagglutinin (HA), we extended the model to support multi-task affinity 304

predictions to multiple targets simultaneously. We also explored the ability of the model to 305

combine classification and regression in a single mixture model, since many of the CR9114 306
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A

B

Figure 6. Global sequence-affinity mapping of trastuzumab variants. Pre-
dicted binding affinities for (A) single or (B) double mutants from a model trained
on the trast-3 dataset. Positions holding mutations comprised CDRH2 (10 positions
starting with R55) and CDRH3 (10 positions starting with W107). The reference
trastuzumab sequence is highlighted with crosses. Mutations at each position include
all possible substitutions with natural amino acids except cysteine, sorted alphabetically
(i.e., X ∈ [A,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y ]).
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variants lost binding to one or more HA subtypes. Lastly, we evaluated the impact of the 307

training set size on the model performance. 308

Classification Regression

Training

Size

Balanced Accuracy RMSE %w/i 0.5-fold

Model H1 H3 FluB H1 H3 FluB H1 H3 FluB

6509
(10 %)

Reg-PT NA NA NA 0.12 0.17 0.33 99% 99% 88%

Mix-PT 0.91 0.98 0.96 0.14 0.19 0.32 99% 99% 88%

Reg-NPT NA NA NA 0.14 0.31 0.45 99% 90% 73%

Mix-NPT 0.92 0.98 0.96 0.14 0.27 0.48 99% 93% 64%

651
(1 %)

Reg-PT NA NA NA 0.15 0.28 0.83 98% 93% 52%

Mix-PT 0.84 0.95 0.64 0.16 0.28 0.81 98% 92% 51%

Reg-NPT NA NA NA 0.26 0.54 0.98 94% 67% 44%

Mix-NPT 0.90 0.94 0.59 0.18 0.45 0.84 98% 73% 51%

65
(0.1 %)

Reg-PT NA NA NA 0.34 0.60 0.79 89% 61% 46%

Mix-PT 0.59 0.86 0.51 0.37 0.61 1.02 87% 60% 43%

Reg-NPT NA NA NA 0.46 0.71 0.95 81% 54% 37%

Mix-NPT 0.73 0.91 0.51 0.44 0.72 1.06 80% 50% 34%

Table 2. Joint model affinity prediction performance for CR9114 on multiple
influenza strains of the hemagglutinin (HA) antigen. For each training set size (10 %,
1 %, 0.1 % of 65,091) four models were trained (Reg : Regression only model; Mix : Mixture
classification/regression model; PT : initialized with pre-trained OAS-model weights; NPT :
initialized with random weights). Results are shown for these models using pooled CV. The
full CR9114 dataset includes 63,419 (97 %) H1, 7,174 (11 %) H3, and 198 (0.3 %) FluB
positive binders.

Results (table 2 and figs. S16 to S21) showed that a single model could be trained to 309

jointly predict affinities of a given antibody sequence against multiple distinct antigen 310

targets. As expected, the predictive power of the model was lower for the FluB target 311

compared to H1 and H3, since the full dataset contains only 193 positive FluB binders. This 312

left only 19 positive examples when using a training set of 10 % and only 1-2 positive 313

examples in training sets of 1 % and 0.1 % (a minimum of one positive and negative 314

example for each target was required when selecting the cross-validation folds, see 315

Supplementary Information). Nevertheless, even with as little as 19 training examples, 88 % 316

of FluB predictions were within 0.5 log of their measured values when using initial weights 317

pre-trained on the OAS dataset, compared to only 73 % when using random initial weights. 318

Using pre-trained weights improved performance in all cases where the number of training 319

examples was below 1,000. 320

The mixture model was able to perform well on the classification tasks without 321

significant loss of performance on the regression tasks compared to the regression only 322

model. The balanced accuracy of the model predictions was above 0.84 in all cases where 323

the training set contained at least 7 positive and 7 negative examples, achieving a 0.91 324

balanced accuracy score on the H3 binding task even with training sets of only 65 variants 325

(7 positive and 58 negative variants on average). 326

Optimizing antibody naturalness may mitigate development hurdles 327

The development of a candidate antibody into a therapeutic drug is a complex process with 328

a high degree of pre-clinical and clinical risk. This risk is often due to numerous challenges 329
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related to production, formulation, efficacy and adverse reactions. Modeling these risks has 330

been a tremendous challenge for the industry due to the difficulty in obtaining informative, 331

abundant and relevant data. 332

We hypothesized that learning sequence patterns across natural antibodies from different 333

species could be useful to identify and prioritize “human-like” antibody variants (as opposed 334

to unnatural sequences) and, ultimately, mitigate drug development risks (fig. 7). To this 335

aim, we took advantage of our OAS pre-trained language models to evaluate antibody 336

sequences for their naturalness (see Methods). We define naturalness as a score computed 337

by pre-trained language models that measures how likely it is for a given antibody sequence 338

to be derived from a species of interest, including human. Thus, naturalness might be used 339

as a guiding metric in antibody design and engineering. 340

To determine the usefulness of naturalness, we evaluated its association with four 341

antibody properties (fig. 7). The first property studied was immunogenicity, for which 342

Anti-Drug Antibodies (ADA) responses were collected from numerous primary studies on 343

clinical-stage antibodies by Marks et al. [29]. A potential confounding factor in a 344

naturalness-immunogenicity association analysis is that some antibodies have a fully human 345

origin, while others are humanized, chimeric or murine. Scoring antibodies of different origin 346

by naturalness would amount to binning them primarily by species, which would be trivial 347

and uninformative. By contrast, scoring antibodies belonging to the same class would 348

amount to genuinely ranking from most natural to least natural. The only two antibody 349

classes in Marks et al. large enough to support a statistical analysis are human and 350

humanized antibodies. We investigated the latter because their reported immunogenicity is 351

greater [29], thereby providing an ideal case study. 352

A scatterplot of the fraction of ADA-positive patients vs. naturalness scores reveals a 353

weak, non-significant correlation (fig. S22). However, closer inspection of ADA responses 354

showed that most data points are in the 0-10 % range, with a few outliers above 20 %. We 355

reasoned that outliers could blur the relationship between naturalness and immunogenicity. 356

To mitigate the impact of outliers, we binned naturalness scores (fig. S23A) and computed 357

the median ADA responses per naturalness bin. This analysis revealed that antibodies with 358

higher naturalness scores trigger lower median ADA responses than less natural antibodies 359

(fig. 7B). 360

The second property considered was developability, which can be estimated with the 361

Therapeutic Antibody Profiler (TAP) [32]. We computed naturalness scores (with our 362

model) and developability scores (with TAP) for the heavy-chain sequences from a 363

high-diversity phage display dataset [30] (“Gifford Library”, fig. S23B) as well as for 364

trastuzumab variants (fig. S23C). In both cases, we found a strong association between 365

naturalness and TAP-determined developability (fig. 7C, fig. S24). This is a remarkable 366

result because naturalness scores were obtained upon training exclusively with examples of 367

naturally occurring antibody sequences, while TAP was calibrated using distributions of five 368

metrics computed on therapeutic antibodies [32]. The association between naturalness and 369

TAP flags suggests that developable antibodies are enriched in human-like antibodies. 370

The third property investigated was antibody expression level in mammalian (HEK-293) 371

cells, which has been reported for clinical-stage antibodies by Jain et al. [31]. As for 372

immunogenicity, the dataset comprises several classes of antibodies and we again focused on 373

humanized antibodies. We found that antibodies with high naturalness scores were 374

expressed at higher levels than antibodies with low scores (fig. 7D, fig. S23D). 375

The fourth property considered was mutational load, which is the number of amino acid 376

substitutions in a variant compared to a parental antibody sequence. We computed 377

naturalness scores for 6,710,400 single-, double-, and triple-mutant trastuzumab variants 378

(fig. 7E). We found that naturalness was negatively associated with mutational load. This is 379

consistent with the observation that most mutations have detrimental effects. Since the 380
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A
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Figure 7. Associations between antibody naturalness, immunogenicity, developa-
bility and other properties. (A) Language models pre-trained with antibody repertoire
sequences can be leveraged to compute the naturalness of an antibody sequence conditioned
on a given species. Naturalness scores were investigated for association with four antibody
properties: (B) Immunogenicity using Anti-Drug Antibody (ADA) responses to humanized
clinical-stage antibodies reported by Marks et al. [29] (n=97); (C) Developability failures as
predicted by the Therapeutic Antibody Profiler (TAP) for round 3-enriched phage display
hits from the Gifford library [30] (n=882); (D) Expression levels in HEK-293 cells (mg/L)
of clinical-stage humanized antibodies from Jain et al. [31] (n=67); (E) Mutational load of
trastuzumab variants using a mutagenesis strategy as the trast-3 dataset (n=6,710,400). The
dashed line corresponds to the naturalness of the parental trastuzumab sequence. In all box
plots, the four bins (Low, Low-Mid, Mid-High, High) result from dividing the naturalness
range into four parts of equal size (see fig. S23). In all panels, p-values were computed
using the Jonckheere-Terpstra test for trends across the four bins going from Low to High.
Datasets in panels B and D were scored using the average naturalness of both the heavy
and light chains, whereas datasets in panels C and E comprised only heavy-chain variants
and were consistently scored only with the heavy-chain models.
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introduction of mutations can degrade naturalness, it is important to simultaneously 381

optimize naturalness and binding affinity of antibodies. 382

Sequence variant generation with desired properties 383

Antibody optimization can be performed to a limited extent for individual properties using 384

a number of established laboratory approaches. For example, deep mutational scanning has 385

been used to improve the binding affinity of antibody candidates [5]. However, large 386

mutational spaces cannot be exhaustively screened by these methods, limiting the scope of 387

potential improvements. Library screening methods, such as phage display, can overcome 388

this obstacle, but selecting for a single property at a time (such as binding affinity) may 389

negatively affect other properties of interest [19]. For example, we showed that increasing 390

the mutational load often lowers naturalness (fig. 7D). 391

We exhaustively predicted ACE and naturalness scores of all variants with up to three 392

mutations from trastuzumab. Of the 6.7 million variants, just 46,931 (0.7 %) had predicted 393

ACE scores higher than trastuzumab (fig. S25A). Of these, only 4,003 (8.5 %) had a 394

naturalness score on par or higher than trastuzumab (fig. S25B). Randomly screening this 395

space using the approximately 50,000-member trast-3 library yielded only 60 variants with 396

higher ACE scores and naturalness than trastuzumab. 397

In silico screening provides a way to address this issue by optimizing for multiple 398

properties simultaneously with a designer objective function. We built a genetic algorithm 399

(GA) on top of our affinity and naturalness model oracle that was capable of greatly 400

improving the throughput of our in silico screening process. As an example, we could 401

minimize, maximize, or target specific ACE scores in a search space of over 6.7 million 402

sequence variants (fig. 8A), while simultaneously maximizing naturalness (fig. 8B). 403

After 20 generations, the GA performed nearly as well as an exhaustive search of the 404

mutational space (fig. 8C); 85 of the top 100 variants identified by the GA were among the 405

top 100 variants overall. In addition, all of the top variants identified by the GA were within 406

5 % of the maximum achievable ACE score (9, resulting from 9 sorting gates) and had 407

higher naturalness scores than trastuzumab. As a baseline, we performed a random search 408

by querying the same number of sequences as the GA. This search was only able to find two 409

sequences with higher ACE score and naturalness than trastuzumab (fig. 8C). 410

Unlike an exhaustive search of the mutation space, GA-driven optimization is highly 411

efficient. In each generation, the GA sampled 200 new variants, resulting in only 4,000 total 412

sequences sampled across all 20 generations. In addition, over half of the top 100 individuals 413

were selected by the GA in the first 12 generations (fig. 8D). Altogether, these results show 414

that a genetic algorithm built on top of predictive models for binding affinity and 415

naturalness can quickly and efficiently identify a set of top candidates for downstream 416

development. The value of optimization techniques coupled with AI oracles will likely 417

increase as in silico design is applied to larger combinatorial sequence spaces. 418
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Figure 8. A genetic algorithm can efficiently maximize, minimize, or target
specific ACE scores while maximizing naturalness. (A) Each line tracks the average
predicted ACE score of the best 100 sequences observed across the evolutionary trajectory.
Shaded regions indicate the standard deviation. (B) Average naturalness of the best 100
sequences observed across the evolutionary trajectory. Shaded regions indicate the standard
deviation. (C) ACE and naturalness scores of the best 100 sequences determined through
three search strategies: Genetic Algorithm, Exhaustive Search, and Random Search. Red
dashed lines indicate the scores predicted for trastuzumab. Purple dashed lines indicate
maximum scores predicted across the entire combinatorial space. (D) Histogram showing
the first generation where each of the top 100 sequences observed along the evolutionary
trajectory was identified.
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Discussion 419

Deep learning methods have demonstrated rapid progress for the modeling of proteins, 420

including their sequence, structure, and function. Likewise, protein interactions are receiving 421

increased attention for the purposes of therapeutic design. A key limitation for many of 422

these efforts is the ability to synthesize large libraries of proteins and quantitatively assess 423

their attributes. Here we demonstrate that our ACE assay is a powerful complement to deep 424

learning models, providing the throughput and fidelity needed to accurately model antibody 425

binding affinity with up to four/five mutations across two CDRs (combinatorial space: 426

108-1010) in a single experiment. The ACE assay provides advantages over existing methods 427

for large scale antibody variant interrogation such as Tite-Seq [33], SORTCERY [34] and 428

Phage Display [35]. First, the ACE assay utilizes the SoluProTM E. coli B Strain to solubly 429

express antibodies intracellularly, avoiding binding artifacts associated with surface display 430

formats. Additionally, the ACE assay leverages genetic tools available for E. coli, enabling 431

faster library generation cycles and increased transformation efficiency compared to other 432

organisms. Finally, the ACE assay is a true screening method where all variants are 433

measured regardless of affinity strength, as opposed to selection methods, such as phage 434

display, where only high-affinity binders are preferentially isolated. 435

The predictive ability of our deep learning models demonstrated here is enabled by the 436

quantitative data generated by our improved ACE assay, which provides two distinct 437

advantages from a modeling standpoint. The first is the expanded capabilities of models 438

trained on quantitative data for overall increased performance and quantitative predictions, 439

which are particularly useful when the goal is to tune the binding affinity rather than simply 440

maximize it. Secondly, quantitative training data allows for the intelligent selection of 441

sequences for downstream quantification with lower-throughput assays, such as SPR. The 442

sequence space available for bioengineering is enormous and heavily skewed toward 443

deleterious mutations. A common approach to this problem is to bias the mutational library 444

towards specific locations or key mutations, but the strength of epistatic effects identified by 445

our models suggest these approaches systematically miss potentially impactful sequence 446

changes. Our pre-quantification step with the improved ACE assay allows us to access 447

sequences throughout the binding affinity spectrum without bias, which increases the 448

generalization power of the models. 449

Only a very small fraction of antibody sequences within the enormous combinatorial 450

space have been detected in nature; there are >108 high-quality, unique sequences in the 451

OAS database versus more than 10120 possible unique CDR sequences for the longest 452

reported human sequences. Our naturalness model can help determine whether a novel 453

sequence belongs to this category, and we roughly estimate the size of this natural space as 454

1060 (fig. S30). While this estimate has considerable uncertainty, it is clear that the natural 455

space is much larger than can possibly be screened in a lab or in-silico. At the same time, 456

these natural sequences are vanishingly rare in screens of random sequence variants. The 457

solution we present here is to apply models trained on both naturalness and affinity data, 458

the intersection of which effectively allows evaluation of a larger whitespace of sequences 459

than can be physically assessed, while also focusing screening on the most relevant “natural” 460

sequences. 461

In future work, our co-optimization of two antibody properties could be extended to the 462

co-optimization of additional properties relevant to protein interactions and therapeutic 463

potential. Training models on multiple affinity datasets unlocks binding predictions for 464

multiple antigens or antigen variants, as we showed here for CR9114. In principle, 465

multi-antigen predictions could facilitate engineering of breadth (co-optimization for antigen 466

escape variants), specificity (co-optimization to reduce binding to undesired members of a 467

protein family, while increasing binding to desired members of the same family) and species 468
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cross-reactivity (co-optimization for human and cynomolgus orthologs), just to name a few. 469

We demonstrated that pre-training on natural sequences improved the predictive 470

performance of our models. Likewise, the models can continue to improve with the addition 471

of new data, both with respect to new antibodies and with the addition of new performance 472

or developability attributes. Naturalness can be computed extremely rapidly and can 473

complement other scores, with the potential to reduce preclinical or clinical attrition caused 474

by complex properties such as immunogenicity. Additional properties could be added 475

alongside data from their respective assays, such as conditional pH binding, effector function, 476

melting temperature, self-aggregation, viscosity and more. For most of these, a single model 477

trained on a high-quality dataset could serve for diverse antibodies of interest and even 478

improve the power of the binding affinity models through multi-task learning. Importantly, 479

the framework presented facilitates tuning an antibody property toward a desired 480

specification, not necessarily limited to selecting for variants at the extremes of a given range. 481

Moreover, while the models we presented are focused on target affinity and naturalness of 482

antibodies, the approach could in principle be extended to other protein classes. 483

While AI-assisted optimization of biological sequences can reduce therapeutic 484

development time, it does not by itself offer a fully in-silico replacement. To this end, fully 485

generative modeling approaches are needed. However, their training and validation faces an 486

even greater data challenge, since the full de novo combinatorial space considered without 487

the anchor of the parental sequence is dramatically larger, and strong selective binders are an 488

infinitesimally small slice of that space. Structure-based approaches are showing increasing 489

capabilities and may be useful for bridging this gap. The language models presented here 490

can serve as in-silico oracles within their applicability domain, and might provide an 491

effective training ground for generative models. Harmonizing antibody optimization and de 492

novo generation may be the next big step in data-driven therapeutic design. 493
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Materials and Methods 494

Libraries 495

Cloning Antibody variants were cloned and expressed in Fab format. To produce ACE 496

and SPR datasets meant for model training and evaluation (table 1), we synthesized DNA 497

variants spanning CDRH2 and CDRH3 in a single oligonucleotide using ssDNA oligo pools 498

(Twist Bioscience). Codons were randomly selected from the two most common in E. coli B 499

strain [36] for each variant. Two synonymous DNA sequences were synthesized (5 or 10 for 500

parental trastuzumab and positive/negative controls) for each amino acid variant. 501

Amplification of Twist Bioscience ssDNA oligo pools was carried out by PCR according to 502

Twist Bioscience’s recommendations with the exception that Platinum SuperFi II DNA 503

polymerase (ThermoFisher) was used in place of KAPA polymerase. Briefly, 20 µL reactions 504

consisted of 1x Platinum SuperFi II Mastermix, 0.3 µM each of forward and reverse primers, 505

and 10 ng oligo pool. Reactions were initially denatured for 3 min at 95 °C, followed by 13 506

cycles of: 95 °C for 20 s; 66 °C for 20 s; 72 °C for 15 s; and a final extension of 72 °C for 507

1 min. DNA amplification was confirmed by agarose gel electrophoresis, and amplified DNA 508

was subsequently purified (DNA Clean and Concentrate Kit, Zymo Research). 509

To build libraries meant for SPR validation of model designs in independent experiments, 510

oligonucleotides (59 nt) spanning CDRH3 and the immediate upstream/downstream 511

flanking nucleotides were synthesized by Integrated DNA Technologies (IDT). Codon usage 512

was identical for all variants, except at mutated positions. Olignoucleotides were pooled 513

such that each oligonucleotide was represented in an equimolar fashion within the pool. 514

This single stranded oligonucleotide pool was used directly in cloning reactions (see below) 515

without prior amplification. 516

To generate linearized vector, a two-step PCR was carried out to split Absci’s plasmid 517

vector carrying fab format trastuzumab into two fragments in a manner that provided 518

cloning overlaps of approximately 30 nucleotides (nt) on the 5’ and 3’ ends of the amplified 519

Twist Bioscience libraries, or 18 nt on the 5’ and 3’ ends of IDT oligonucleotides. Vector 520

linearization reactions were digested with DPN1 (New England Bioloabs) and purified from 521

a 0.8 % agarose gel (Gel DNA Recovery Kit, Zymo Research) to eliminate parental vector 522

carry through. Cloning reactions consisted of 50 fmol of each purified vector fragment, 523

either 100 fmol purified library (Twist Bioscience) or 10 pmol (IDT) insert, and 1x final 524

concentration NEBuilder HiFi DNA Assembly (New England Biolabs). Reactions were 525

incubated at 50 °C for either two hours (Twist Bioscience libraries) or 25 min (IDT library), 526

and subsequently purified (DNA Clean and Concentrate Kit, Zymo Research). Transformax 527

Epi300 (Lucigen) E. coli were transformed by electroporation (BioRad MicroPulser) with 528

the purified assembly reactions and grown overnight at 30 °C on LB agar plates containing 529

50 µg/ml kanamycin. The following morning colonies were scraped from LB plates and 530

plasmids were extracted (Plasmid Midi Kit, Zymo Research) and submitted for QC 531

sequencing. 532

QC Antibody variant libraries were amplified by PCR across the CDRH2 and CDRH3 533

region and sequenced with 2x150 nt reads using the Illumina NextSeq 1000 P2 platform 534

with 20 % PhiX. The PCR reaction used 10 nM primer concentration, Q5 2x master mix 535

(NEB) and 1 ng of input DNA diluted in MGH20. Reactions were initially denatured at 536

98 °C for 3 min; followed by 30 cycles of 98 °C for 10 s, 59 °C for 30 s, 72 °C for 15 s; with a 537

final extension of 72 °C for 2 min. 538

Sequencing results were analyzed for distribution of mutations, variant representation, 539

library complexity and recovery of expected sequences. Metrics included coefficient of 540

variation of sequence representation, read share of top 1 % most prevalent sequences and 541
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percentage of designed library sequences observed within the library. 542

Activity-specific Cell-Enrichment (ACE) assay 543

Antibody Expression in SoluProTM
E. coli B Strain SoluProTM E. coli B strain 544

was transformed by electroporation (Bio-Rad MicroPulser). Cells were allowed to recover in 545

1 ml SOC medium for 90 min at 30 °C with 250 rpm shaking. Recovery outgrowths were 546

centrifuged for 5 min at 8,000 g and the supernatant was removed. Resultant cell pellets 547

were resuspended in 1 mL of induction media (IBM) (4.5 g/L Potassium Phosphate 547 548

monobasic, 13.8 g/L Ammonium Sulfate, 20.5 g/L yeast extract, 20.5 g/L glycerol, 1.95 g/L 549

Citric Acid) containing inducers and supplements (260 µM Arabinose, 50 µg/mL 550

Kanamycin, 8 mM Magnesium Sulfate, 1 mM Propionate, 1X Korz trace metals) and then 551

added to 100 ml IBM containing inducers and supplements in a 1 L baffled flask. Antibody 552

Fab induction was allowed to proceed at 30 °C with 250 rpm shaking for 24 h. At the end of 553

24 h, 1 mL aliquots of the induced culture were adjusted to 25 % v/v glycerol and stored at 554

-80 °C. 555

Cell Preparation High-throughput quantitative selection of antigen-specific 556

Fab-expressing cells was adapted from the approach described in Liu et al. [20]. For staining, 557

an OD600 = 2 of thawed glycerol stocks from induced cultures were transferred to 0.7 ml 558

matrix tubes, centrifuged at 3300 g for 3 min, and resulting pelleted cells were washed three 559

times with PBS + 1 mM EDTA. Washed cells were thoroughly resuspended in 250 µL of 560

33 mM phosphate buffer (Na2HPO4) by pipetting then fixed by the further addition of 561

250 µL 32 mM phosphate buffer with 0.5 % paraformaldehyde and 0.04 % glutaraldehyde. 562

After 40 min incubation on ice, cells were washed three times with PBS, resuspended in 563

lysozyme buffer (20 mM Tris, 50 mM glucose, 10 mM EDTA, 5 µg/ml lysozyme) and 564

incubated for 8 min on ice. Fixed and lysozyme-treated cells were equilibrated in stain 565

buffer by washing 3x in 0.1% saponin buffer (1x PBS, 1 mM EDTA, 0.1 % saponin, 1 % 566

heat-inactivated FBS). 567

Staining Prior to library staining, the Her2 probe was titrated against the reference strain 568

to determine the 75 % effective concentration (EC75). After lysozyme treatment and 569

equilibration, the trast-1 library was resuspended in 250 µL saponin buffer and transferred 570

to a new matrix tube. The trast-3 library was incubated for 20 min in AlphaLISA 571

immunoassay assay buffer (Perkin Elmer; 25 mM HEPES, 0.1 % casein, 1 mg/ml 572

dextran-500, 0.5 % Triton X-100, and 0.05 % kathon) for additional permeabilization prior 573

to equilibration and resuspension in saponin buffer. A 2x concentration of stain reagents – 574

100 nM human HER2:AF647 (Acro Biosystems) and 60 nM anti-kappa light chain:AF488 575

(BioLegend) – was prepared in saponin buffer, then 250 µL probe solution was transferred to 576

the prepared cells bringing the total stain volume to 500 µL with 50 nM Her2 and 30 nM 577

anti-kappa LC. Libraries were incubated with probe overnight (16 h) with end to end 578

rotation at 4 ˚C protected from light. After incubation, cells were pelleted, washed 3x with 579

PBS, and then resuspended in 500 µL PBS by thorough pipetting. 580

Sorting Libraries were sorted on FACSymphony S6 (BD Biosciences) instruments. 581

Immediately prior to sorting, 50 µL prepped sample was transferred to a flow tube 582

containing 1 mL PBS + 3 µL propidium iodide. Aggregates, debris, and impermeable cells 583

were were removed with singlets, size, and PI+ parent gating. To reduce expression bias, an 584

additional parent gate was set on the mid 65 % of peak expression positive cells. Collection 585

gates were drawn to evenly sample the log range of binding signal. The far right gate was 586

set to collect the brightest 10,000 events over the allotted sort time, estimated by including 587
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the 5 brightest events for every 65,000 in the expression parent gate. Seven additional gates 588

were then set to fractionate the positive binding signal, and one gate collected the binding 589

negative population (fig. S26). Libraries were sorted simultaneously on two instruments 590

with photomultipliers adjusted to normalize fluorescence intensity, and the collected events 591

were processed independently as technical replicates. 592

Next-generation sequencing Cell material from various gates was collected in a diluted 593

PBS mixture (VWR), in 1.5 mL tubes (Eppendorf). Post sort samples were spun down at 594

3,800 g and tube volume was normalized to 20 µl. Amplicons for sequencing were generated 595

from one of two methods. The frist method amplifies the CDRH2 and CDRH3 region via a 596

two-phase PCR, using collected cell material directly as template. During the initial PCR 597

phase, unique molecular identifiers (UMIs) and partial Illumina adapters were added to the 598

CDRH2 and CDRH3 amplicon via 4 PCR cycles. The second phase PCR added the 599

remaining portion of the Illumina sequencing adapter and the Illumina i5 and i7 sample 600

indices. The initial PCR reaction used 1 nm UMI primer concentration, Q5 2x master mix 601

(NEB) and 20 µl of sorted cell material input suspended in diluted PBS (VWR). Reactions 602

were initially denatured at 98 °C for 3 min, followed by 4 cycles of 98 °C for 10 s; 59 °C for 603

30 s; 72 °C for 30 s; with a final extension of 72 °C for 2 min. Following the initial PCR, 604

0.5 µM of the secondary sample index primers were added to each reaction tube. Reactions 605

were then denatured at 98 °C for 3 min, followed by 29 cycles of 98 °C for 10 s; 62 °C for 606

30 s; 72 °C for 15 s; with a final extension of 72 °C for 2 min. The second method amplifies 607

the CDRH2 and CDRH3 region without the addition of UMIs. This single phase PCR used 608

10 nM primer concentration, Q5 2x master mix (NEB) and 20 µl of sorted cell material 609

input suspended in diluted PBS (VWR). Reactions were initially denatured at 98 °C for 610

3 min, followed by 30 cycles of 98 °C for 10 s; 59 °C for 30 s; 72 °C for 15 s; with a final 611

extension of 72 °C for 2 min. After amplification by either method samples were run on a 612

2 % agarose gel at 75 V for 60 min and the proper length band was excised and purified 613

using the Zymoclean Gel DNA Recovery Kit (Zymo Research). Resulting DNA samples 614

were quantified by Qubit fluorometer (Invitrogen), normalized and pooled. Pool size was 615

verified via Tapestation 1000 HS and was sequenced on an Illumina NextSeq 1000 P2 (2x150 616

nt) with 20 % PhiX. 617

ACE assay analysis 618

In order to produce quantitative binding scores from reads, the following processing and 619

quality control steps were performed: 620

1. Paired-end reads were merged using FLASH2 [37] with the maximum allowed overlap 621

set according to the amplicon size and sequencing reads length (150 bases for all the 622

libraries described in this manuscript). 623

2. If UMIs were added during amplification, the downstream UMI tag (last 8 bases) was 624

moved to the beginning of the read, and the UMI Collapse tool [38] was used in 625

FASTQ mode to remove any PCR duplicates. Only fully identical sequences were 626

considered to be duplicates and error correction was not performed at this stage. 627

3. Primers were removed from both ends of the merged read using cutadapt tool [39], 628

and reads were discarded where primers were not detected. 629

4. Reads were aggregated across all FACS sorting gates and aligned to the reference 630

sequence (parental version of the amplicon) in amino acid space. Alignment was 631

performed using the Needleman–Wunsch algorithm implemented in Biopython [40], 632

with the following parameters: PairwiseAligner, mode=global, match_score=5, 633

mismatch_score=-4, open_gap_score=-20, extend_gap_score=-1. Parameters 634

were chosen by manual inspection across a number of processed libraries. 635
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5. Reads were then discarded if (1) the mean base quality was below 20, or (2) a 636

sequence (in DNA space) was seen in fewer than 10 reads across all gates (or in less 637

than 10 unique molecules following UMI deduplication, when available). 638

6. We also flagged: (1) sequences that align to the reference with a low score (defined as 639

less then 0.6 of the score obtained by aligning the reference to itself); (2) sequences 640

containing stop codons outside of the region of interest and (3) sequences containing 641

frame-shifting insertions or deletions. Flagged sequences were not included in any 642

mutation-related statistics, but were used for count normalization for binding score 643

calculations. FastQC [41] and MultiQC [42] were used to generate sequencing quality 644

control metrics. 645

7. For each gate, the prevalence of each sequence (read or UMI counts relative to the 646

total number of reads/UMIs from all sequences in that gate) was normalized to 1 647

million counts. 648

8. The binding score (ACE score) was assigned to each unique DNA sequence by taking 649

a weighted average of the normalized counts across the sorting gates. For all 650

experiments, weights were assigned linearly using an integer scale: the gate capturing 651

the lowest fluorescence signal was assigned a weight of 1, the next lowest gate was 652

assigned a weight of 2, etc. 653

9. Any detected sequence which was not present in the originally designed and 654

synthesized library was dropped. 655

10. For each unique amino acid variant, ACE scores from synonymous DNA sequences 656

were averaged. 657

11. ACE scores were averaged across independent FACS sorts, dropping sequences for 658

which the standard deviation of replicate measurements was greater than 1.25. An 659

amino acid variant was retained only if we collected at least three independent 660

QC-passing observations between synonymous DNA variants and replicate FACS sorts. 661

Surface Plasmon Resonance (SPR) 662

Antibody expression in SoluProTM
E. coli B strain Individual SoluProTM E. coli 663

B strain colonies expressing antibody Fab variants were inoculated in LB media in 96-well 664

deep blocks (Labcon) and grown at 30 °C for 24 h to create seed cultures for inducing 665

expression. Seed cultures were then inoculated in IBM containing inducers and supplements 666

in 96-well deep block and additionally grown at 30 °C for 24 h. Post induction samples were 667

transferred to 96-well plates (Greiner Bio-One), pelleted and lysed in 50 µL lysis buffer (1X 668

BugBuster protein extraction reagent containing 0.01 KU Benzonase Nuclease and 1X 669

Protease inhibitor cocktail). Plates were incubated for 15-20 min at 30 °C then centrifuged 670

to remove insoluble debris. After lysis samples were adjusted with 200 µL SPR running 671

buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 % w/v Tween-20, 0.5 mg/mL 672

BSA) to a final volume of 260 µL and filtered into 96-well plates. Lysed samples were then 673

transferred from 96-well plates to 384-well plates for high-throughput SPR using a Hamilton 674

STAR automated liquid handler. Colonies were prepared in two sets of independent 675

replicates prior to lysis and each replicate was measured in two separate experimental runs. 676

In some instances, single replicates were used, as indicated. 677

SPR experiments High-throughput SPR experiments were conducted on a microfluidic 678

Carterra LSA SPR instrument using SPR running buffer (10 mM HEPES, 150 mM NaCl, 679

3 mM EDTA, 0.01 % w/v Tween-20, 0.5 mg/mL BSA) and SPR wash buffer (10 mM 680

HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 % w/v Tween-20). Carterra LSA SAD200M 681

chips were pre-functionalized with 20 µg/mL biotinylated antibody capture reagent for 600 s 682

prior to conducting experiments. Lysed samples in 384-well blocks were immobilized onto 683
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chip surfaces for 600 s followed by a 60 s washout step for baseline stabilization. Antigen 684

binding was conducted using the non-regeneration kinetics method with a 300 s association 685

phase followed by a 900 s dissociation phase. For analyte injections, six leading blanks were 686

introduced to create a consistent baseline prior to monitoring antigen binding kinetics. After 687

the leading blanks, five concentrations of HER2 extracellular domain antigen (ACRO 688

Biosystems, prepared in three-fold serial dilution from a starting concentration of 500 nM), 689

were injected into the instrument and the time series response was recorded. In most 690

experiments, measurements on individual DNA variants were repeated four times. Typically 691

each experiment run consisted of two complete measurement cycles (ligand immobilization, 692

leading blank injections, analyte injections, chip regeneration) which provided two duplicate 693

measurement attempts per clone per run. In most experiments, technical replicates 694

measured in separate runs further doubled the number of measurement attempts per clone 695

to four. 696

Sensorgram baseline subtraction Sensorgrams were generated from raw data using the 697

Carterra Kinetics GUI software application provided with the Carterra LSA instrument. 698

Sensorgram response values vs. time for 384 regions of interest (ROIs) on the Carterra chip 699

were corrected using a double-referencing and alignment technique implemented by the 700

Carterra manufacturer. This technique incorporates both the time-synchronous response of 701

an interspot reference region adjacent to the ROI, as well as the non-synchronous response 702

from a leading blank buffer injection flowing over the same ROI during an earlier 703

experiment run cycle, to estimate and subtract a background response. Corrected 704

sensorgrams were exported from the Kinetics software package for offline analysis. 705

Kinetic binding parameters Kinetic binding parameters were estimated via non-linear 706

regression using a standard 1:1 binding model which was modified by the incorporation of a 707

vector of tc parameters each unique to one analyte concentration. For a single analyte 708

concentration, the association phase model is: 709

R(t, ca) =
caRmax

ca +KD

[1− e−(cakon+koff )(t−tc)]

where

t = time

tc = concentration-dependent time offset

ca = analyte concentration

kon = forward (association) reaction rate constant

koff = backward (dissociation) reaction rate constant

KD = koff /kon

Rmax = asymptotic maximum instrument response.

The additional concentration-dependent time offset parameter tc was needed because of the 710

unique measurement system that Carterra uses, in which successive association phase 711

measurements at each new analyte concentration are attempted before the analyte from the 712

previous phase has fully dissociated, leading to response curves which do not begin from 713

zero response at t = 0. The time offset parameters represent the projected time intercept of 714

each association response curve; i.e., the amount of time prior to the start of the association 715

phase, at which the measurement would have had to begin in order to reach the actual 716

observed response at t = 0. The dissociation phase was modeled as a standard decaying 717
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exponential curve: 718

R(t, ca) = Rde
−koff (t−td−tc)

where

td = start time of dissociation phase measurement

Rd = final estimated response value R(td, ca) from association equation.

The regression was conducted using R-language [43] scripts. Minpack.lm [44], an R-ported 719

copy of MINPACK-1 [45] [46], a FORTRAN-based software package which implements the 720

Levenberg-Marquardt [47] [48] non-linear least squares parameter search algorithm, was 721

used to conduct the parameter search. 722

Next-generation sequencing To identify the DNA sequence of individual antibody 723

variants evaluated in SPR, NGS was carried out on measured variants. Individual colonies 724

were picked from LB agar plates containing 50 µg/mL Kanamycin (Teknova) into 96 deep 725

well plates containing 1mL LB media (Teknova). The culture plates were grown overnight in 726

a 30 °C shaker incubator. 200 µl of overnight culture was transferred into new 96 well plates 727

(Labcon) and spun down at 3,500 g. A portion of the pelleted material was transferred into 728

96 well PCR (Thermo-Fisher) plate via pinner (Fisher Scientific) which contained reagents 729

for performing an initial phase PCR of a two-phase PCR for addition of Illumina adapters 730

and sequencing. Reaction volumes used were 25 µl. During the initial PCR phase partial 731

Illumina adapters were added to CDRH2 and CDRH3 amplicon via 4 PCR cycles. The 732

second phase PCR added the remaining portion of the Illumina sequencing adapter and the 733

Illumina i5 and i7 sample indices. The initial PCR reaction used 0.45 µM UMI primer 734

concentration, 12.5 µl Q5 2x master mix (NEB). Reactions were initially denatured at 98 °C 735

for 3 min, followed by 4 cycles of 98 °C for 10 s; 59 °C for 30 s; 72 °C for 30 s; with a final 736

extension of 72 °C for 2 min. Following the initial PCR, 0.5 µM of the secondary sample 737

index primers were added to each reaction tube. Reactions were then denatured at 98 °C for 738

3 min, followed by 29 cycles of 98 °C for 10 s; 62 °C for 30 s; 72 °C for 15 s; with a final 739

extension of 72 °C for 2 min. Reactions were then pooled into a 1.5 mL tube (Eppendorf). 740

Pooled samples were size selected with a 1x AMPure XP (Beckman Coulter) bead 741

procedure. Resulting DNA samples were quantified by Qubit fluorometer. Pool size was 742

verified via Tapestation 1000 HS and was sequenced on an Illumina MiSeq Micro (2x150 nt) 743

with 20 % PhiX. 744

After sequencing, amplicon reads were merged corresponding to their sample indices. 745

Merging was performed by custom Python scripts. Scripts merged R1 and R2 reads based 746

on overlapping sequence. Instances of unique amplicon sequences within each sample were 747

counted and tabulated. Next, custom R scripts were applied to calculate sequence frequency 748

ratios and Levenshtein distance between dominant and secondary sequences observed within 749

samples. These calculations were used for quality filtering downstream to ensure clonal SPR 750

measurements. The dominant sequence within each sample was then combined with 751

companion Carterra SPR measurements. 752

QC SPR fits were excluded if any of the following criteria was satisfied: 753

• less than 3 analyte concentrations providing usable fits 754

• handling errors as noted by operator 755

• non-physical fits (such as an upward-sloping dissociation-phase signal, even after 756

sensorgram baseline subtraction) 757

• non-convergent fits 758
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• a value of − log10 KD ≤ 8.5 coupled with an estimated signal-to-noise ratio, for the 759

highest analyte concentration ca included in the fit (typically 500 nM), of less than 10 760

• a value of − log10 KD > 8.5 coupled with an estimated signal-to-noise ratio, for the 761

highest analyte concentration included in the fit, of less than 70 762

• a tc value, for the highest analyte concentration included in the fit, such that 763

tc < −300 s or tc > 0 s 764

• failed NGS 765

• non-clonal sequence (dominant sequence less than 100 times as abundant as secondary 766

sequence when the Levenshtein distance between the two is greater than 2) 767

• sequence does not match any designed variant in the synthesized oligo pool (within a 768

sequence identity tolerance to accommodate sequencing errors) 769

KD and koff were − log10 transformed, while kon was log10 transformed. Distributions 770

of kinetic parameters were visually inspected for absence of significant batch effects. 771

Multiple measurements of the same antibody variant (usually (a) duplicate serial 772

measurements of the same clone in the same SPR run; (b) technical replicates of the same 773

clone from duplicate 384-well plates measured in separate runs; (c) two DNA variants with 774

identical translation, when available; and (d) independent clones of a variant) were averaged 775

in log space. Variants whose − log10 KD measurements showed a coefficient of variation 776

greater than 5 % upon aggregation were dropped. 777

Observed Antibody Space (OAS) database processing 778

We downloaded the OAS database [49] of unpaired immunoglobulin chains on February 1st, 779

2022. From the full database, the following exclusions were applied to the raw OAS data: 780

first, studies whose samples come from another study in the database (Author field 781

Bonsignori et al., 2016, Halliley et al., 2015, Thornqvist et al., 2018); 782

second, studies originating from immature B cells (BType field Immature-B-Cells and 783

Pre-B-Cells) and B cell-associated cancers (Disease field Light Chain Amyloidosis, 784

CLL); and finally, sequences were excluded if any of the following criteria was met: 785

• Sequence contains a stop codon 786

• Sequence is non-productive 787

• V and J segments are out of frame 788

• Framework region 2 is missing 789

• Framework region 3 is missing 790

• CDR3 is longer than 37 amino acids 791

• J segment sequence identity with closest germline is less than 50 % 792

• Sequence is missing an amino acid at the beginning or at the end of any CDR 793

• Conserved cysteine residue is missing 794

• Locus does not match chain type 795

From the resulting sequences, and for each of the two (heavy/light) chains, two types of 796

subsequences were extracted: “CDR” and “near-full length (NF)”. In CDR datasets, we 797

extracted only the CDR1, CDR2 and CDR3 segments as defined by the union of the 798

IMGT [50] and Martin [51] labeling schemes. In NF datasets, we included IMGT positions 799

21 through 128 (127 for light chains and for heavy chains from rabbits and camels). 800

In all four datasets, duplicated sequences were removed, while tabulating the redundancy 801

information (i.e. the number of times a specific sequence was observed in each study). 802

Sequences with a redundancy of one (i.e., observed only once in a single study) were 803

dropped on the grounds of insufficient evidence of genuine biological sequence as opposed to 804

sequencing errors. 805
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A flow chart with the number of sequences filtered out and retained after each 806

pre-processing step is shown in fig. S27. 807

Model architecture 808

Protein language models have shown great promise across a variety of protein engineering 809

tasks [17,52–56]. Our architecture is based on the RoBERTa model [57] and its PyTorch 810

implementation within the Hugging Face framework [58]. 811

The model contains 16 hidden layers, with 12 attention heads per layer. The hidden 812

layer size is 768 and the intermediate layer size is 3072. In total, the model contains 114 813

million parameters. In a pilot study, we tested larger and smaller models and compared 814

their losses in both a masked language modeling task and a regression task. We noticed that 815

smaller models underperformed whereas larger models did not provide significant 816

performance boost, confirming that the selected model size was appropriate. 817

Model training 818

Pre-training with OAS antibody sequences All models for predicting binding affinity 819

presented in this study were derived from RoBERTa architectures pre-trained on 820

immunoglobulin sequences from the four datasets resulting from the OAS database 821

processing (see Observed Antibody Space (OAS) database processing above). Thus, four 822

models were trained with heavy or light chain, CDR or NF sequences. All training 823

sequences contained species tokens (e.g. h for human, m for mouse, etc) for conditioning the 824

language model [59]. In addition, input sequences to CDR models contained 825

CDR-delimiting tokens so that the originally discontinuous CDR segments could be 826

concatenated into a single input sequence. 827

CDR models were used for all binding affinity and naturalness predictions, except for the 828

CR9114 case study for which NF models were used due to framework mutations. 829

Model training was performed in a self-supervised manner [49], following a dynamic 830

masking procedure, as described in Wolf et al. [57], whereby 15 % of the tokens in a 831

sequence are randomly masked with a special [MASK] token. For masking, the 832

DataCollatorForLanguageModeling class from the Hugging Face framework was used 833

which, unlike Wolf et al. [57], simply masks all randomly selected tokens. Training was 834

performed using the LAMB optimizer [60] with ✏ of 10−6, weight decay of 0.003 and a clamp 835

value of 10. The maximum learning rate used was 10−3 with linear decay and 1000 steps of 836

warm-up, dropout probability of 0.2, weight decay of 0.01, and a batch size of 416. The 837

models were trained for a maximum of 10 epochs. 838

Fine-tuning with affinity data Transfer learning was used to leverage the 839

OAS-pre-trained model by adding a dense hidden layer with 768 nodes followed by a 840

projection layer with the required number of outputs. All layers remained unfrozen to 841

update all model parameters during training. Training was performed with the AdamW 842

optimizer [61], with a learning rate of 10−5, a weight decay of 0.01, a dropout probability of 843

0.2, a linear learning rate decay with 100 warm up steps, a batch size of 64, and 844

mean-squared error (MSE) as the loss function. 845

All models were trained for 25,000 steps. The number of steps, batch size, and learning 846

rate for all runs were determined through a hyperparameter sweep using a pilot dataset. A 847

grid search was run across three learning rates (10−4, 10−5, 10−6), three batch sizes (64, 848

128, 256), and two numbers of steps (25,000, 50,000). Each hyperparameter set was used to 849

fine-tune the OAS pre-trained RoBERTa model using a 90:10 train:hold-out split from a 850

pilot dataset (fig. S28A), and from a subset of 500 randomly selected sequences from the 851
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pilot dataset (fig. S28B). To minimize model training time while maintaining model 852

performance, the final hyperparameters were 10−5 for learning rate, a batch size of 64, and 853

25,000 training steps. 854

Co-training with ACE and SPR data We designed a model to predict both ACE- and 855

SPR-derived binding affinities from sequences, using a weighted sum of the mean squared 856

errors for each regression task as the loss function. Loss weights were inversely proportional 857

to the dataset size. All models were evaluated using pooled out-of-fold predictions in a 858

10-fold cross-validation setting. 859

Model characterization 860

Baselines To assess the effectiveness of fine-tuning a pre-trained model, two baselines 861

were evaluated. 862

First, a RoBERTa model with the same architecture as the pre-trained models was 863

trained with affinity data starting from randomly initialized weights (no OAS pre-training). 864

Second, an XGBoost [62] model was implemented using a one-hot encoding of amino 865

acids. The following XGBoost hyperparameters were selected using a grid search on a pilot 866

dataset: eta=0.05, gamma=0, n_estimators=1000, subsample=0.6, max_depth=9, 867

min_child_weight=1, col_sample_by_tree=1 (fig. S29). Default values were used for all 868

other hyperparameters. 869

Out-of-distribution predictions of binding affinity To evaluate the predictive power 870

for binding affinities outside of the distribution seen in the training set, we fine-tuned a 871

model by excluding any variant with − log10 KD higher than that of parental trastuzumab 872

from the training set. We then tasked the model with predicting affinities of a set of 873

sequences highly enriched in binders stronger than trastuzumab as validated by SPR. 874

Assessing the size and fidelity of training data Models were trained using subsets of 875

different sizes from datasets of varying fidelity. The trast-3 dataset was treated as the 876

high-fidelity dataset. The low-fidelity dataset was generated by isolating a single DNA 877

variant for each sequence from a single FACS sort, using the same preprocessing workflow. 878

Each training dataset was evenly split into 1, 2, 4, 8, 16, 32, 64 and 128 subsets, respectively. 879

Each training subset was used to both directly train a model with randomly initialized 880

weights, and to fine-tune the OAS pre-trained model. A common hold-out dataset 881

containing 10 % of data from the original trast-3 dataset was used to evaluate all models, 882

regardless of data source or training set size. These sequences were removed from both 883

datasets before constructing the training subsets. 884

Embeddings Embeddings were generated by taking the mean pool of activations from 885

the last hidden layer of the model, head excluded. The resulting size of the embedding of 886

each sequence was 768. The dimensionality of embeddings was reduced with the Uniform 887

Manifold Approximation and Projection (UMAP) algorithm as implemented in the RAPIDS 888

library [63]. 889

In a first investigation, we compared embeddings from four different models, resulting 890

from presence or absence of OAS pre-training and presence or absence of binding affinity 891

fine-tuning using the trast-2 dataset. 892

In a second investigation, embeddings were leveraged to cluster variants close in internal 893

representation space. To this aim, dimensionality-reduced embeddings were filtered to retain 894

only strong binders based on predicted ACE scores and 3D embeddings were clustered using 895
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HDBSCAN [64], with a minimum cluster size of 40 sequences. Sequence logo plots for each 896

cluster were generated using Logomaker [65]. 897

Epistasis 898

Epistatic interactions between mutations were assessed by considering the predicted affinity 899

scores for the double mutant, the constituent single mutants, and the parental antibody 900

sequence. Specifically, the epistatic effect between two mutations, m1 and m2, was 901

calculated as: 902

Epistasis(m1,m2) = (y1,2 − ywt)− (y1 − ywt)− (y2 − ywt) 903

where yi denotes the predicted ACE score for the mutant with mutation(s) i, or the 904

parental sequence in the case of ywt. 905

Antibody naturalness 906

We define the naturalness ns of a sequence as the inverse of its pseudo-perplexity according 907

to the definition by Salazar et al. [66] for masked language models (MLMs). Recall that, for 908

a sequence S with N tokens, the pseudo-likelihood that a MLM with parameters Θ assigns 909

to this sequence is given by: 910

PLL(S) =
P|S|

t=1 PMLM (t|S\t;Θ) 911

The pseudo-perplexity is obtained by first normalizing the pseudo-likelihood by the 912

sequence length and then applying the negative exponentiation function: 913

PPPL(S) = exp(− 1
|S|PLL(S)) 914

Thus, the sequence naturalness is: 915

ns =
1

PPPL(S) = exp( 1
|S|PLL(S)) 916

Naturalness scores were computed using the two pre-trained models described above (see 917

Pre-training with OAS antibody sequences). Several antibody properties (immunogenicity, 918

developability, expression level, and mutational load) were analyzed to investigate a potential 919

relationship with sequence naturalness. For datasets in which antibodies exhibit variation in 920

both chains (immunogenicity and expression level), the reported naturalness score was the 921

average of the individual heavy- and light-chain scores. For datasets in which antibodies 922

exhibit variation only in the heavy chain (developability and mutational load), only the 923

heavy-chain naturalness score was computed. In all cases, we report naturalness scores from 924

models trained on CDR datasets (see Pre-training with OAS antibody sequences). 925

To assess the relationship between naturalness and antibody properties of interest, we 926

binned naturalness values into four equally spaced intervals (low, low-mid, mid-high, high). 927

For each naturalness bin, we plotted the property of interest using boxplots (continuous 928

properties) or barplots (binary properties). For boxplots, we set the whisker parameter to 929

1.5 and did not show outliers. The rationale for binning continuous variables was to reduce 930

the impact of outliers and noisy data points. To assess statistical significance, we computed 931

the Jonckheere-Terpstra test for trends. 932
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Immunogenicity 933

We obtained immunogenic responses, reported as percent of patients with anti-drug antibody 934

(ADA) responses, from Marks et al. [29]. Of all classes of antibodies (human, humanized, 935

chimeric, hybrid, mouse), only humanized antibodies were included in our analysis because 936

(1) inter-class comparisons are trivial, amounting to simple species discrimination, while 937

intra-class comparisons are both challenging and practically relevant; (2) humanized 938

antibodies represent the largest class (n=97) in this dataset, thereby providing the greatest 939

statistical power; and (3) compared to the second largest class in the dataset (human 940

antibodies) humanized antibodies have in principle more immunogenic potential due to the 941

animal origin of their CDRs, thereby providing a practically relevant case study to assess 942

the degree of human naturalness achieved upon engineering/humanization. 943

Developability 944

Sequence developability was defined as a binary variable indicating whether an antibody 945

sequence fails at least one of the developability flags computed by the Therapeutic Antibody 946

Profiler (TAP) tool [32]. See the TAP analysis subsection for a detailed definition of these 947

flags. 948

We scored hits (positive enrichment in round 3 compared to round 2, heavy-chain 949

sequences, n=882) from the phage display library described in Liu et al. [30], which we refer 950

to as the Gifford Library). 951

We also analyzed trastuzumab variants with up to 3 simultaneous amino-acid 952

replacements in 10 positions of CDRH2 and 10 positions of CDRH3 (according to the same 953

mutagenesis strategy of the trast-3 dataset). 954

Processing of the Gifford Library dataset We obtained phage display data from the 955

Gifford Library described in Liu et al. [30]. Specifically, we downloaded the raw FASTQ files 956

for rounds 2 (E1_R2) and 3 (E1_R3) of enrichment from the NIH’s Sequence Read Archive 957

(SRA) under accession number SRP158510. 958

We then followed the guidelines for processing the data as per Liu et al. [30]. First, the 959

flanking DNA sequences of TATTATTGCGCG and TGGGGTCAA were used to pull the CDRH3 960

sequences. Then, sequences that included N or cannot be translated (divisible by 3) were 961

excluded. Next, DNA sequences were translated into protein sequences, and were dropped if 962

they contained a premature stop codon. Then, CDRH3 sequences shorter than 8 or longer 963

than 20 amino acids were filtered out. Lastly, the number of occurrences of each unique 964

sequence was determined, and sequences occurring less than 6 times were considered noise 965

and dropped. 966

TAP analysis We used the Therapeutic Antibody Profiler (TAP), described in Raybould 967

et al. [32] to calculate developability scores. We used a commercially licensed virtual 968

machine image of the tool, which was last updated on February 7th 2022. 969

TAP calculates five developability metrics: Total CDR Length, Patches of Surface 970

Hydrophobicity (PSH), Patches of Positive Charge (PPC), Patches of Negative Charge 971

(PNC), and Structural Fv Charge Symmetry Parameter (SFvCSP). Furthermore, it 972

generates flags for whether or not the metric is acceptable relative to a reference set of 973

therapeutic antibodies. Metrics that fell outside the reference distribution are flagged as 974

"red", whereas metrics that fall within the most extreme 5 % of the distribution are 975

"amber", and metrics that fall in the main body of the distribution past the 5 % threshold 976

are "green" and acceptable. 977
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Using TAP, we analyzed sequence hits from the Gifford Library dataset as well as 978

trastuzumab variants. TAP flags were used determine if an antibody had acceptable 979

developability scores. An antibody variant was considered a failure if at least one of the 980

TAP flags was not green. 981

Antibody expression in HEK-293 cells 982

We collected clinical-stage antibody expression levels in HEK-293 cells from Jain et al. [31]. 983

The dataset was heterogeneous with regard to antibody type (e.g., human, humanized, 984

chimeric, etc). For the same reasons illustrated for immunogenicity, we focused on 985

humanized antibodies (n=67). 986

In addition to HEK-293 titer, Jain et al. reported additional biophysical measurements. 987

We did not find associations between naturalness score and biophysical parameters other 988

than titer. However, we note that a dataset of clinical-stage antibodies is necessarily already 989

biased towards antibodies endowed with favorable properties, meaning that distributions of 990

biophysical parameters are strongly depleted of poorly performing antibodies. The 991

availability of positive but not negative examples severely limits the ability to detect 992

associations between biophysical parameters and other metrics such as naturalness. 993

Mutational load 994

Mutational load was defined as the number of amino acid substitutions in an antibody 995

variant compared with its parental sequence. We analyzed the distribution of naturalness 996

scores across 6,710,400 trastuzumab variants with mutational load between 1 and 3 (10 997

positions in CDRH2 and 10 positions in CDRH3, allowing all natural amino acids except 998

cysteine). We assessed the statistical significance of differences in naturalness score 999

distributions by mutational load using the Jonckheere-Terpstra test for trends. 1000

Genetic algorithms 1001

To generate sequence variants with desired properties (e.g., high/low/target ACE score and 1002

high naturalness), we developed a genetic algorithm (GA) using a tailored version of the 1003

DEAP library in Python [67]. In this GA, each individual sequence variant was reduced to 1004

its CDR representation described above (union of IMGT and Martin definitions). Each GA 1005

run was initialized from a single trastuzumab sequence. The predicted ACE and naturalness 1006

scores of each sequence were evaluated using the models described above. A cyclical 1007

select-reproduce-mutate-cull process was applied to the starting sequence pool that is 1008

common in µ+ � GAs [68]. 1009

Each offspring pool contained the original 100 parents, along with 200 new, unique 1010

individuals. Of the offspring, 30 % were created from a single point mutation of a parent 1011

(excluding cysteine), and 70 % were created from two-point crossovers between two parents. 1012

Since the GA is initialized from a single sequence, the first offspring pool contained 299 1013

individuals, all of which were created using single point mutations from trastuzumab. All 1014

sequences were constrained to remain within the trast-3 library computational space (up to 1015

triple mutants in 10 positions in CDRH2 and CDRH3, respectively). If a unique offspring 1016

could not be produced within these constraints, a randomly generated individual within the 1017

constraints was added to the offspring pool. Tournament selection without replacement 1018

(tournament size = 3) was performed to cull the population (size = 300) and select the 1019

individuals for the next generation (size = 100). 1020

This process represented one “generation” of the GA, which was always run for 20 1021

generations. To properly balance between the ACE score and naturalness objectives, the 1022
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fitness objective was defined as: 1023

Fitness =
(naturalness)5

|ACE score−ACE target|

To test the generative capabilities of our models, the GA was run in the following 1024

configurations: 1025

• Target ACE score = 9 (maximize ACE score), while maximizing naturalness 1026

• Target ACE score = 1 (minimize ACE score), while maximizing naturalness 1027

• Target ACE score = 6, while maximizing naturalness 1028

Since the GA queries 300 individuals in the first generation, and 200 individuals in each 1029

subsequent generation, the GA queries 4,100 (non-unique) sequences across 20 generations. 1030

As a baseline, we randomly selected 4,100 sequences from the full mutational search space, 1031

and selected the top 100 individuals with the highest fitness as described above. The fitness 1032

function was also used to identify the top 100 individuals from the exhaustive search of the 1033

mutational space and from the trast-3 dataset. 1034
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